Abstract
Two-photon excitation, time-resolved fluorescence microscopy was used to investigate the fluorescence quenching mechanisms in aggregates of light-harvesting chlorophyll a/b pigment protein complexes of photosystem II from green plants (LHCII). Time-gated microscopy images show the presence of large heterogeneity in fluorescence lifetimes not only for different LHCII aggregates, but also within a single aggregate. Thus, the fluorescence decay traces obtained from macroscopic measurements reflect an average over a large distribution of local fluorescence kinetics. This opens the possibility to resolve spatially different structural/functional units in chloroplasts and other heterogeneous photosynthetic systems in vivo, and gives the opportunity to investigate individually the excited states dynamics of each unit. We show that the lifetime distribution is sensitive to the concentration of quenchers contained in the system. Triplets, which are generated at high pulse repetition rates of excitation (>1 MHz), preferentially quench domains with initially shorter fluorescence lifetimes. This proves our previous prediction from singlet-singlet annihilation investigations (Barzda, V., V. Gulbinas, R. Kananavicius, V. Cervinskas, H. van Amerongen, R. van Grondelle, and L. Valkunas. 2001. Biophys. J. 80:2409-2421) that shorter fluorescence lifetimes originate from larger domains in LHCII aggregates. We found that singlet-singlet annihilation has a strong effect in time-resolved fluorescence microscopy of connective systems and has to be taken into consideration. Despite that, clear differences in fluorescence decays can be detected that can also qualitatively be understood.
Full Text
The Full Text of this article is available as a PDF (222.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barzda V., Gulbinas V., Kananavicius R., Cervinskas V., van Amerongen H., van Grondelle R., Valkunas L. Singlet-singlet annihilation kinetics in aggregates and trimers of LHCII. Biophys J. 2001 May;80(5):2409–2421. doi: 10.1016/S0006-3495(01)76210-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barzda V., Peterman E. J., van Grondelle R., van Amerongen H. The influence of aggregation on triplet formation in light-harvesting chlorophyll a/b pigment-protein complex II of green plants. Biochemistry. 1998 Jan 13;37(2):546–551. doi: 10.1021/bi972123a. [DOI] [PubMed] [Google Scholar]
- Barzda V., Vengris M., Valkunas L., van Grondelle R., van Amerongen H. Generation of fluorescence quenchers from the triplet states of chlorophylls in the major light-harvesting complex II from green plants. Biochemistry. 2000 Aug 29;39(34):10468–10477. doi: 10.1021/bi992826n. [DOI] [PubMed] [Google Scholar]
- Boekema E. J., Van Roon H., Van Breemen J. F., Dekker J. P. Supramolecular organization of photosystem II and its light-harvesting antenna in partially solubilized photosystem II membranes. Eur J Biochem. 1999 Dec;266(2):444–452. doi: 10.1046/j.1432-1327.1999.00876.x. [DOI] [PubMed] [Google Scholar]
- Bopp M. A., Jia Y., Li L., Cogdell R. J., Hochstrasser R. M. Fluorescence and photobleaching dynamics of single light-harvesting complexes. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10630–10635. doi: 10.1073/pnas.94.20.10630. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dekker J. P., van Roon H., Boekem E. J. Heptameric association of light-harvesting complex II trimers in partially solubilized photosystem II membranes. FEBS Lett. 1999 Apr 23;449(2-3):211–214. doi: 10.1016/s0014-5793(99)00442-1. [DOI] [PubMed] [Google Scholar]
- Denk W., Strickler J. H., Webb W. W. Two-photon laser scanning fluorescence microscopy. Science. 1990 Apr 6;248(4951):73–76. doi: 10.1126/science.2321027. [DOI] [PubMed] [Google Scholar]
- Gradinaru C. C., Ozdemir S., Gülen D., van Stokkum I. H., van Grondelle R., van Amerongen H. The flow of excitation energy in LHCII monomers: implications for the structural model of the major plant antenna. Biophys J. 1998 Dec;75(6):3064–3077. doi: 10.1016/S0006-3495(98)77747-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kühlbrandt W., Wang D. N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994 Feb 17;367(6464):614–621. doi: 10.1038/367614a0. [DOI] [PubMed] [Google Scholar]
- Peterman E. J., Dukker F. M., van Grondelle R., van Amerongen H. Chlorophyll a and carotenoid triplet states in light-harvesting complex II of higher plants. Biophys J. 1995 Dec;69(6):2670–2678. doi: 10.1016/S0006-3495(95)80138-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roelofs T. A., Lee C. H., Holzwarth A. R. Global target analysis of picosecond chlorophyll fluorescence kinetics from pea chloroplasts: A new approach to the characterization of the primary processes in photosystem II alpha- and beta-units. Biophys J. 1992 May;61(5):1147–1163. doi: 10.1016/s0006-3495(92)81924-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandonà D., Croce R., Pagano A., Crimi M., Bassi R. Higher plants light harvesting proteins. Structure and function as revealed by mutation analysis of either protein or chromophore moieties. Biochim Biophys Acta. 1998 Jun 10;1365(1-2):207–214. doi: 10.1016/s0005-2728(98)00068-1. [DOI] [PubMed] [Google Scholar]
- Simidjiev I., Barzda V., Mustárdy L., Garab G. Isolation of lamellar aggregates of the light-harvesting chlorophyll a/b protein complex of photosystem II with long-range chiral order and structural flexibility. Anal Biochem. 1997 Aug 1;250(2):169–175. doi: 10.1006/abio.1997.2204. [DOI] [PubMed] [Google Scholar]
- Somsen O. J., van Mourik F., van Grondelle R., Valkunas L. Energy migration and trapping in a spectrally and spatially inhomogeneous light-harvesting antenna. Biophys J. 1994 May;66(5):1580–1596. doi: 10.1016/S0006-3495(94)80950-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xie X. S., Trautman J. K. Optical studies of single molecules at room temperature. Annu Rev Phys Chem. 1998;49:441–480. doi: 10.1146/annurev.physchem.49.1.441. [DOI] [PubMed] [Google Scholar]