Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jul;81(1):547–555. doi: 10.1016/s0006-3495(01)75721-9

Domain formation in models of the renal brush border membrane outer leaflet.

P E Milhiet 1, C Domec 1, M C Giocondi 1, N Van Mau 1, F Heitz 1, C Le Grimellec 1
PMCID: PMC1301533  PMID: 11423436

Abstract

The plasma membrane outer leaflet plays a key role in determining the existence of rafts and detergent-resistant membrane domains. Monolayers with lipid composition mimicking that of the outer leaflet of renal brush border membranes (BBM) have been deposited on mica and studied by atomic force microscopy. Sphingomyelin (SM) and palmitoyloleoyl phosphatidylcholine (POPC) mixtures, at molar ratios varying from 2:1 to 4:1, were phase-separated into liquid condensed (LC) SM-enriched phase and liquid expanded (LE) POPC-enriched phase. The LC phase accounted for 33 and 58% of the monolayers surface for 2:1 and 4:1 mixtures, respectively. Addition of 20-50 mol % cholesterol (Chl) to the SM/POPC (3:1) mixtures induced marked changes in the topology of monolayers. Whereas Chl promoted the connection between SM domains at 20 mol %, increasing Chl concentration progressively reduced the size of domains and the height differences between the phases. Lateral heterogeneity was, however, still present at 33 mol % Chl. The results indicate that the lipid composition of the outer leaflet is most likely responsible for the BBM thermotropic transition properties. They also strongly suggest that the common maneuver that consists of depleting membrane cholesterol to suppress rafts does not abolish the lateral heterogeneity of BBM membranes.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed S. N., Brown D. A., London E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry. 1997 Sep 9;36(36):10944–10953. doi: 10.1021/bi971167g. [DOI] [PubMed] [Google Scholar]
  2. Ali S., Brockman H. L., Brown R. E. Structural determinants of miscibility in surface films of galactosylceramide and phosphatidylcholine: effect of unsaturation in the galactosylceramide acyl chain. Biochemistry. 1991 Nov 26;30(47):11198–11205. doi: 10.1021/bi00111a002. [DOI] [PubMed] [Google Scholar]
  3. Bagatolli L. A., Gratton E. A correlation between lipid domain shape and binary phospholipid mixture composition in free standing bilayers: A two-photon fluorescence microscopy study. Biophys J. 2000 Jul;79(1):434–447. doi: 10.1016/S0006-3495(00)76305-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brasitus T. A., Tall A. R., Schachter D. Thermotropic transitions in rat intestinal plasma membranes studied by differential scanning calorimetry and fluorescence polarization. Biochemistry. 1980 Mar 18;19(6):1256–1261. doi: 10.1021/bi00547a033. [DOI] [PubMed] [Google Scholar]
  5. Brockman H. Lipid monolayers: why use half a membrane to characterize protein-membrane interactions? Curr Opin Struct Biol. 1999 Aug;9(4):438–443. doi: 10.1016/S0959-440X(99)80061-X. [DOI] [PubMed] [Google Scholar]
  6. Brown D. A., London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998;14:111–136. doi: 10.1146/annurev.cellbio.14.1.111. [DOI] [PubMed] [Google Scholar]
  7. Brown D. A., Rose J. K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992 Feb 7;68(3):533–544. doi: 10.1016/0092-8674(92)90189-j. [DOI] [PubMed] [Google Scholar]
  8. Brown R. E. Sphingolipid organization in biomembranes: what physical studies of model membranes reveal. J Cell Sci. 1998 Jan;111(Pt 1):1–9. doi: 10.1242/jcs.111.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Carmel G., Rodrigue F., Carrière S., Le Grimellec C. Composition and physical properties of lipids from plasma membranes of dog kidney. Biochim Biophys Acta. 1985 Aug 27;818(2):149–157. doi: 10.1016/0005-2736(85)90557-7. [DOI] [PubMed] [Google Scholar]
  10. Demel R. A., Geurts van Kessel W. S., Zwaal R. F., Roelofsen B., van Deenen L. L. Relation between various phospholipase actions on human red cell membranes and the interfacial phospholipid pressure in monolayers. Biochim Biophys Acta. 1975 Sep 16;406(1):97–107. doi: 10.1016/0005-2736(75)90045-0. [DOI] [PubMed] [Google Scholar]
  11. Demel R. A., Jansen J. W., van Dijck P. W., van Deenen L. L. The preferential interaction of cholesterol with different classes of phospholipids. Biochim Biophys Acta. 1977 Feb 14;465(1):1–10. doi: 10.1016/0005-2736(77)90350-9. [DOI] [PubMed] [Google Scholar]
  12. Desveaux D., Després C., Joyeux A., Subramaniam R., Brisson N. PBF-2 is a novel single-stranded DNA binding factor implicated in PR-10a gene activation in potato. Plant Cell. 2000 Aug;12(8):1477–1489. doi: 10.1105/tpc.12.8.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Engel A., Schoenenberger C. A., Müller D. J. High resolution imaging of native biological sample surfaces using scanning probe microscopy. Curr Opin Struct Biol. 1997 Apr;7(2):279–284. doi: 10.1016/s0959-440x(97)80037-1. [DOI] [PubMed] [Google Scholar]
  14. Grönberg L., Slotte J. P. Cholesterol oxidase catalyzed oxidation of cholesterol in mixed lipid monolayers: effects of surface pressure and phospholipid composition on catalytic activity. Biochemistry. 1990 Apr 3;29(13):3173–3178. doi: 10.1021/bi00465a003. [DOI] [PubMed] [Google Scholar]
  15. Hollars C. W., Dunn R. C. Submicron structure in L-alpha-dipalmitoylphosphatidylcholine monolayers and bilayers probed with confocal, atomic force, and near-field microscopy. Biophys J. 1998 Jul;75(1):342–353. doi: 10.1016/S0006-3495(98)77518-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ipsen J. H., Karlström G., Mouritsen O. G., Wennerström H., Zuckermann M. J. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta. 1987 Nov 27;905(1):162–172. doi: 10.1016/0005-2736(87)90020-4. [DOI] [PubMed] [Google Scholar]
  17. Jacobson K., Sheets E. D., Simson R. Revisiting the fluid mosaic model of membranes. Science. 1995 Jun 9;268(5216):1441–1442. doi: 10.1126/science.7770769. [DOI] [PubMed] [Google Scholar]
  18. Jain M. K., White H. B., 3rd Long-range order in biomembranes. Adv Lipid Res. 1977;15:1–60. doi: 10.1016/b978-0-12-024915-2.50007-4. [DOI] [PubMed] [Google Scholar]
  19. Karnovsky M. J., Kleinfeld A. M., Hoover R. L., Klausner R. D. The concept of lipid domains in membranes. J Cell Biol. 1982 Jul;94(1):1–6. doi: 10.1083/jcb.94.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kinnunen P. K. On the principles of functional ordering in biological membranes. Chem Phys Lipids. 1991 Mar;57(2-3):375–399. doi: 10.1016/0009-3084(91)90087-r. [DOI] [PubMed] [Google Scholar]
  21. Klein U., Gimpl G., Fahrenholz F. Alteration of the myometrial plasma membrane cholesterol content with beta-cyclodextrin modulates the binding affinity of the oxytocin receptor. Biochemistry. 1995 Oct 24;34(42):13784–13793. doi: 10.1021/bi00042a009. [DOI] [PubMed] [Google Scholar]
  22. Korlach J., Schwille P., Webb W. W., Feigenson G. W. Characterization of lipid bilayer phases by confocal microscopy and fluorescence correlation spectroscopy. Proc Natl Acad Sci U S A. 1999 Jul 20;96(15):8461–8466. doi: 10.1073/pnas.96.15.8461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kusumi A., Sako Y. Cell surface organization by the membrane skeleton. Curr Opin Cell Biol. 1996 Aug;8(4):566–574. doi: 10.1016/s0955-0674(96)80036-6. [DOI] [PubMed] [Google Scholar]
  24. Le Grimellec C., Carrière S., Cardinal J., Giocondi M. C. Fluidity of brush border and basolateral membranes from human kidney cortex. Am J Physiol. 1983 Aug;245(2):F227–F231. doi: 10.1152/ajprenal.1983.245.2.F227. [DOI] [PubMed] [Google Scholar]
  25. Le Grimellec C., Friedlander G., el Yandouzi E. H., Zlatkine P., Giocondi M. C. Membrane fluidity and transport properties in epithelia. Kidney Int. 1992 Oct;42(4):825–836. doi: 10.1038/ki.1992.357. [DOI] [PubMed] [Google Scholar]
  26. Le Grimellec C., Giocondi M. C., Carrière B., Carrière S., Cardinal J. Membrane fluidity and enzyme activities in brush border and basolateral membranes of the dog kidney. Am J Physiol. 1982 Mar;242(3):F246–F253. doi: 10.1152/ajprenal.1982.242.3.F246. [DOI] [PubMed] [Google Scholar]
  27. Levi M. Heterogeneity of Pi transport by BBM from superficial and juxtamedullary cortex of rat. Am J Physiol. 1990 Jun;258(6 Pt 2):F1616–F1624. doi: 10.1152/ajprenal.1990.258.6.F1616. [DOI] [PubMed] [Google Scholar]
  28. Levi M., Jameson D. M., van der Meer B. W. Role of BBM lipid composition and fluidity in impaired renal Pi transport in aged rat. Am J Physiol. 1989 Jan;256(1 Pt 2):F85–F94. doi: 10.1152/ajprenal.1989.256.1.F85. [DOI] [PubMed] [Google Scholar]
  29. Levi M., Wilson P. V., Cooper O. J., Gratton E. Lipid phases in renal brush border membranes revealed by Laurdan fluorescence. Photochem Photobiol. 1993 Mar;57(3):420–425. doi: 10.1111/j.1751-1097.1993.tb02312.x. [DOI] [PubMed] [Google Scholar]
  30. Marsh D. Lateral pressure in membranes. Biochim Biophys Acta. 1996 Oct 29;1286(3):183–223. doi: 10.1016/s0304-4157(96)00009-3. [DOI] [PubMed] [Google Scholar]
  31. Maulik P. R., Shipley G. G. N-palmitoyl sphingomyelin bilayers: structure and interactions with cholesterol and dipalmitoylphosphatidylcholine. Biochemistry. 1996 Jun 18;35(24):8025–8034. doi: 10.1021/bi9528356. [DOI] [PubMed] [Google Scholar]
  32. McMullen T. P., McElhaney R. N. New aspects of the interaction of cholesterol with dipalmitoylphosphatidylcholine bilayers as revealed by high-sensitivity differential scanning calorimetry. Biochim Biophys Acta. 1995 Mar 8;1234(1):90–98. doi: 10.1016/0005-2736(94)00266-r. [DOI] [PubMed] [Google Scholar]
  33. Pike L. J., Miller J. M. Cholesterol depletion delocalizes phosphatidylinositol bisphosphate and inhibits hormone-stimulated phosphatidylinositol turnover. J Biol Chem. 1998 Aug 28;273(35):22298–22304. doi: 10.1074/jbc.273.35.22298. [DOI] [PubMed] [Google Scholar]
  34. Pralle A., Keller P., Florin E. L., Simons K., Hörber J. K. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol. 2000 Mar 6;148(5):997–1008. doi: 10.1083/jcb.148.5.997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Radmacher M., Tillamnn R. W., Fritz M., Gaub H. E. From molecules to cells: imaging soft samples with the atomic force microscope. Science. 1992 Sep 25;257(5078):1900–1905. doi: 10.1126/science.1411505. [DOI] [PubMed] [Google Scholar]
  36. Ramstedt B., Slotte J. P. Interaction of cholesterol with sphingomyelins and acyl-chain-matched phosphatidylcholines: a comparative study of the effect of the chain length. Biophys J. 1999 Feb;76(2):908–915. doi: 10.1016/S0006-3495(99)77254-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Röper K., Corbeil D., Huttner W. B. Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol. 2000 Sep;2(9):582–592. doi: 10.1038/35023524. [DOI] [PubMed] [Google Scholar]
  38. Sankaram M. B., Thompson T. E. Interaction of cholesterol with various glycerophospholipids and sphingomyelin. Biochemistry. 1990 Nov 27;29(47):10670–10675. doi: 10.1021/bi00499a014. [DOI] [PubMed] [Google Scholar]
  39. Schroeder R., London E., Brown D. Interactions between saturated acyl chains confer detergent resistance on lipids and glycosylphosphatidylinositol (GPI)-anchored proteins: GPI-anchored proteins in liposomes and cells show similar behavior. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12130–12134. doi: 10.1073/pnas.91.25.12130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Silvestro L., Axelsen P. H. Infrared spectroscopy of supported lipid monolayer, bilayer, and multibilayer membranes. Chem Phys Lipids. 1998 Nov;96(1-2):69–80. doi: 10.1016/s0009-3084(98)00081-4. [DOI] [PubMed] [Google Scholar]
  41. Silvius J. R., del Giudice D., Lafleur M. Cholesterol at different bilayer concentrations can promote or antagonize lateral segregation of phospholipids of differing acyl chain length. Biochemistry. 1996 Dec 3;35(48):15198–15208. doi: 10.1021/bi9615506. [DOI] [PubMed] [Google Scholar]
  42. Simons K., Ikonen E. Functional rafts in cell membranes. Nature. 1997 Jun 5;387(6633):569–572. doi: 10.1038/42408. [DOI] [PubMed] [Google Scholar]
  43. Simons K., Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000 Oct;1(1):31–39. doi: 10.1038/35036052. [DOI] [PubMed] [Google Scholar]
  44. Simons K., van Meer G. Lipid sorting in epithelial cells. Biochemistry. 1988 Aug 23;27(17):6197–6202. doi: 10.1021/bi00417a001. [DOI] [PubMed] [Google Scholar]
  45. Slotte J. P. Lateral domain heterogeneity in cholesterol/phosphatidylcholine monolayers as a function of cholesterol concentration and phosphatidylcholine acyl chain length. Biochim Biophys Acta. 1995 Sep 13;1238(2):118–126. doi: 10.1016/0005-2736(95)00127-o. [DOI] [PubMed] [Google Scholar]
  46. Slotte J. P. Sphingomyelin-cholesterol interactions in biological and model membranes. Chem Phys Lipids. 1999 Nov;102(1-2):13–27. doi: 10.1016/s0009-3084(99)00071-7. [DOI] [PubMed] [Google Scholar]
  47. Smaby J. M., Kulkarni V. S., Momsen M., Brown R. E. The interfacial elastic packing interactions of galactosylceramides, sphingomyelins, and phosphatidylcholines. Biophys J. 1996 Feb;70(2):868–877. doi: 10.1016/S0006-3495(96)79629-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Spiegel S., Matyas G. R., Cheng L., Sacktor B. Asymmetric distribution of gangliosides in rat renal brush-border and basolateral membranes. Biochim Biophys Acta. 1988 Feb 18;938(2):270–278. doi: 10.1016/0005-2736(88)90165-4. [DOI] [PubMed] [Google Scholar]
  49. Tocanne J. F., Dupou-Cézanne L., Lopez A. Lateral diffusion of lipids in model and natural membranes. Prog Lipid Res. 1994;33(3):203–237. doi: 10.1016/0163-7827(94)90027-2. [DOI] [PubMed] [Google Scholar]
  50. Untrach S. H., Shipley G. G. Molecular interactions between lecithin and sphingomyelin. Temperature- and composition-dependent phase separation. J Biol Chem. 1977 Jul 10;252(13):4449–4457. [PubMed] [Google Scholar]
  51. Van Mau N., Vié V., Chaloin L., Lesniewska E., Heitz F., Le Grimellec C. Lipid-induced organization of a primary amphipathic peptide: a coupled AFM-monolayer study. J Membr Biol. 1999 Feb 1;167(3):241–249. doi: 10.1007/s002329900488. [DOI] [PubMed] [Google Scholar]
  52. Venien C., Le Grimellec C. Phospholipid asymmetry in renal brush-border membranes. Biochim Biophys Acta. 1988 Jul 7;942(1):159–168. doi: 10.1016/0005-2736(88)90285-4. [DOI] [PubMed] [Google Scholar]
  53. Worthman L. A., Nag K., Davis P. J., Keough K. M. Cholesterol in condensed and fluid phosphatidylcholine monolayers studied by epifluorescence microscopy. Biophys J. 1997 Jun;72(6):2569–2580. doi: 10.1016/S0006-3495(97)78900-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zasadzinski J. A., Viswanathan R., Madsen L., Garnaes J., Schwartz D. K. Langmuir-Blodgett films. Science. 1994 Mar 25;263(5154):1726–1733. doi: 10.1126/science.8134836. [DOI] [PubMed] [Google Scholar]
  55. el Yandouzi E. H., Le Grimellec C. Cholesterol heterogeneity in the plasma membrane of epithelial cells. Biochemistry. 1992 Jan 21;31(2):547–551. doi: 10.1021/bi00117a035. [DOI] [PubMed] [Google Scholar]
  56. el Yandouzi E. H., Le Grimellec C. Effect of cholesterol oxidase treatment on physical state of renal brush border membranes: evidence for a cholesterol pool interacting weakly with membrane lipids. Biochemistry. 1993 Mar 2;32(8):2047–2052. doi: 10.1021/bi00059a023. [DOI] [PubMed] [Google Scholar]
  57. ten Grotenhuis E., Demel R. A., Ponec M., Boer D. R., van Miltenburg J. C., Bouwstra J. A. Phase behavior of stratum corneum lipids in mixed Langmuir-Blodgett monolayers. Biophys J. 1996 Sep;71(3):1389–1399. doi: 10.1016/S0006-3495(96)79341-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES