Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Jul;81(1):556–562. doi: 10.1016/S0006-3495(01)75722-0

Single molecule spectroscopy on the light-harvesting complex II of higher plants.

C Tietz 1, F Jelezko 1, U Gerken 1, S Schuler 1, A Schubert 1, H Rogl 1, J Wrachtrup 1
PMCID: PMC1301534  PMID: 11423437

Abstract

Spectroscopic and polarization properties of single light-harvesting complexes of higher plants (LHC-II) were studied at both room temperature and T < 5 K. Monomeric complexes emit roughly linearly polarized fluorescence light thus indicating the existence of only one emitting state. Most probably this observation is explained by efficient triplet quenching restricted to one chlorophyll a (Chl a) molecule or by rather irreversible energy transfer within the pool of Chl a molecules. LHC-II complexes in the trimeric (native) arrangement bleach in a number of steps, suggesting localization of excitations within the monomeric subunits. Interpretation of the fluorescence polarization properties of trimers requires the assumption of transition dipole moments tilted out of the symmetry plane of the complex. Low-temperature fluorescence emission of trimers is characterized by several narrow spectral lines. Even at lowest excitation intensities, we observed considerable spectral diffusion most probably due to low temperature protein dynamics. These results also indicate weak interaction between Chls belonging to different monomeric subunits within the trimer thus leading to a localization of excitations within the monomer. The experimental results demonstrate the feasibility of polarization sensitive studies on single LHC-II complexes and suggest an application for determination of the Chl transition-dipole moment orientations, a key issue in understanding the structure-function relationships.

Full Text

The Full Text of this article is available as a PDF (464.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bopp M. A., Jia Y., Li L., Cogdell R. J., Hochstrasser R. M. Fluorescence and photobleaching dynamics of single light-harvesting complexes. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10630–10635. doi: 10.1073/pnas.94.20.10630. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bopp M. A., Sytnik A., Howard T. D., Cogdell R. J., Hochstrasser R. M. The dynamics of structural deformations of immobilized single light-harvesting complexes. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11271–11276. doi: 10.1073/pnas.96.20.11271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Gradinaru C. C., Ozdemir S., Gülen D., van Stokkum I. H., van Grondelle R., van Amerongen H. The flow of excitation energy in LHCII monomers: implications for the structural model of the major plant antenna. Biophys J. 1998 Dec;75(6):3064–3077. doi: 10.1016/S0006-3495(98)77747-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Jansson S. The light-harvesting chlorophyll a/b-binding proteins. Biochim Biophys Acta. 1994 Feb 8;1184(1):1–19. doi: 10.1016/0005-2728(94)90148-1. [DOI] [PubMed] [Google Scholar]
  5. Kleima F. J., Gradinaru C. C., Calkoen F., van Stokkum I. H., van Grondelle R., van Amerongen H. Energy transfer in LHCII monomers at 77K studied by sub-picosecond transient absorption spectroscopy. Biochemistry. 1997 Dec 9;36(49):15262–15268. doi: 10.1021/bi9716480. [DOI] [PubMed] [Google Scholar]
  6. Krupa Z., Huner N. P., Williams J. P., Maissan E., James D. R. Development at Cold-Hardening Temperatures : The Structure and Composition of Purified Rye Light Harvesting Complex II. Plant Physiol. 1987 May;84(1):19–24. doi: 10.1104/pp.84.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kühlbrandt W., Wang D. N., Fujiyoshi Y. Atomic model of plant light-harvesting complex by electron crystallography. Nature. 1994 Feb 17;367(6464):614–621. doi: 10.1038/367614a0. [DOI] [PubMed] [Google Scholar]
  8. Nussberger S., Dekker J. P., Kühlbrandt W., van Bolhuis B. M., van Grondelle R., van Amerongen H. Spectroscopic characterization of three different monomeric forms of the main chlorophyll a/b binding protein from chloroplast membranes. Biochemistry. 1994 Dec 13;33(49):14775–14783. doi: 10.1021/bi00253a016. [DOI] [PubMed] [Google Scholar]
  9. Remelli R., Varotto C., Sandonà D., Croce R., Bassi R. Chlorophyll binding to monomeric light-harvesting complex. A mutation analysis of chromophore-binding residues. J Biol Chem. 1999 Nov 19;274(47):33510–33521. doi: 10.1074/jbc.274.47.33510. [DOI] [PubMed] [Google Scholar]
  10. Rogl H., Kühlbrandt W. Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features. Biochemistry. 1999 Dec 7;38(49):16214–16222. doi: 10.1021/bi990739p. [DOI] [PubMed] [Google Scholar]
  11. Schödel R., Irrgang K. D., Voigt J., Renger G. Rate of carotenoid triplet formation in solubilized light-harvesting complex II (LHCII) from spinach. Biophys J. 1998 Dec;75(6):3143–3153. doi: 10.1016/S0006-3495(98)77756-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Yang C., Kosemund K., Cornet C., Paulsen H. Exchange of pigment-binding amino acids in light-harvesting chlorophyll a/b protein. Biochemistry. 1999 Dec 7;38(49):16205–16213. doi: 10.1021/bi990738x. [DOI] [PubMed] [Google Scholar]
  13. van Oijen AM, Ketelaars M, Kohler J, Aartsma TJ, Schmidt J. Unraveling the electronic structure of individual photosynthetic pigment-protein complexes . Science. 1999 Jul 16;285(5426):400–402. doi: 10.1126/science.285.5426.400. [DOI] [PubMed] [Google Scholar]
  14. van Oijen A. M., Ketelaars M., Köhler J., Aartsma T. J., Schmidt J. Spectroscopy of individual light-harvesting 2 complexes of Rhodopseudomonas acidophila: diagonal disorder, intercomplex heterogeneity, spectral diffusion, and energy transfer in the B800 band. Biophys J. 2000 Mar;78(3):1570–1577. doi: 10.1016/S0006-3495(00)76709-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES