Abstract
The viral genome and replicative enzymes of the human immunodeficiency virus are encased in a shell consisting of assembled mature capsid protein (CA). The core shell is a stable, effective protective barrier, but is also poised for dissolution on cue to allow transmission of the viral genome into its new host. In this study, static light scattering (SLS) and dynamic light scattering (DLS) were used to examine the entire range of the CA protein response to an environmental cue (pH). The CA protein assembled tubular structures as previously reported but also was capable of assembling spheres, depending on the pH of the protein solution. The switch from formation of one to the other occurred within a very narrow physiological pH range (i.e., pH 7.0 to pH 6.8). Below this range, only dimers were detected. Above this range, the previously described tubular structures were detected. The ability of the CA protein to form a spherical structure that is detectable by DLS but not by electron microscopy indicates that some assemblages are inherently sensitive to perturbation. The dimers in equilibrium with these assemblages exhibited distinct conformations: Dimers in equilibrium with the spherical form exhibited a compact conformation. Dimers in equilibrium with the rod-like form had an extended conformation. Thus, the CA protein possesses the inherent ability to form metastable structures, the morphology of which is regulated by an environmentally-sensitive molecular switch. Such metastable structures may exist as transient intermediates during the assembly and/or disassembly of the virus core.
Full Text
The Full Text of this article is available as a PDF (135.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aiken C. Pseudotyping human immunodeficiency virus type 1 (HIV-1) by the glycoprotein of vesicular stomatitis virus targets HIV-1 entry to an endocytic pathway and suppresses both the requirement for Nef and the sensitivity to cyclosporin A. J Virol. 1997 Aug;71(8):5871–5877. doi: 10.1128/jvi.71.8.5871-5877.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berthet-Colominas C., Monaco S., Novelli A., Sibaï G., Mallet F., Cusack S. Head-to-tail dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein (p24) complexed with a monoclonal antibody Fab. EMBO J. 1999 Mar 1;18(5):1124–1136. doi: 10.1093/emboj/18.5.1124. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CASPAR D. L., KLUG A. Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol. 1962;27:1–24. doi: 10.1101/sqb.1962.027.001.005. [DOI] [PubMed] [Google Scholar]
- Chrystie I. L., Almeida J. D. The morphology of human immunodeficiency virus (HIV) by negative staining. J Med Virol. 1988 Jul;25(3):281–288. doi: 10.1002/jmv.1890250305. [DOI] [PubMed] [Google Scholar]
- Ehrlich L. S., Agresta B. E., Carter C. A. Assembly of recombinant human immunodeficiency virus type 1 capsid protein in vitro. J Virol. 1992 Aug;66(8):4874–4883. doi: 10.1128/jvi.66.8.4874-4883.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ehrlich L. S., Krausslich H. G., Wimmer E., Carter C. A. Expression in Escherichia coli and purification of human immunodeficiency virus type 1 capsid protein (p24). AIDS Res Hum Retroviruses. 1990 Oct;6(10):1169–1175. doi: 10.1089/aid.1990.6.1169. [DOI] [PubMed] [Google Scholar]
- Ellard F. M., Drew J., Blakemore W. E., Stuart D. I., King A. M. Evidence for the role of His-142 of protein 1C in the acid-induced disassembly of foot-and-mouth disease virus capsids. J Gen Virol. 1999 Aug;80(Pt 8):1911–1918. doi: 10.1099/0022-1317-80-8-1911. [DOI] [PubMed] [Google Scholar]
- Fackler O. T., Peterlin B. M. Endocytic entry of HIV-1. Curr Biol. 2000 Aug 24;10(16):1005–1008. doi: 10.1016/s0960-9822(00)00654-0. [DOI] [PubMed] [Google Scholar]
- Fukui T., Imura S., Goto T., Nakai M. Inner architecture of human and simian immunodeficiency viruses. Microsc Res Tech. 1993 Jul 1;25(4):335–340. doi: 10.1002/jemt.1070250410. [DOI] [PubMed] [Google Scholar]
- Gamble T. R., Vajdos F. F., Yoo S., Worthylake D. K., Houseweart M., Sundquist W. I., Hill C. P. Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell. 1996 Dec 27;87(7):1285–1294. doi: 10.1016/s0092-8674(00)81823-1. [DOI] [PubMed] [Google Scholar]
- Gamble T. R., Yoo S., Vajdos F. F., von Schwedler U. K., Worthylake D. K., Wang H., McCutcheon J. P., Sundquist W. I., Hill C. P. Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science. 1997 Oct 31;278(5339):849–853. doi: 10.1126/science.278.5339.849. [DOI] [PubMed] [Google Scholar]
- Ganser B. K., Li S., Klishko V. Y., Finch J. T., Sundquist W. I. Assembly and analysis of conical models for the HIV-1 core. Science. 1999 Jan 1;283(5398):80–83. doi: 10.1126/science.283.5398.80. [DOI] [PubMed] [Google Scholar]
- Gelderblom H. R. Assembly and morphology of HIV: potential effect of structure on viral function. AIDS. 1991 Jun;5(6):617–637. [PubMed] [Google Scholar]
- Gitti R. K., Lee B. M., Walker J., Summers M. F., Yoo S., Sundquist W. I. Structure of the amino-terminal core domain of the HIV-1 capsid protein. Science. 1996 Jul 12;273(5272):231–235. doi: 10.1126/science.273.5272.231. [DOI] [PubMed] [Google Scholar]
- Grewe C., Beck A., Gelderblom H. R. HIV: early virus-cell interactions. J Acquir Immune Defic Syndr. 1990;3(10):965–974. [PubMed] [Google Scholar]
- Gross I., Hohenberg H., Kräusslich H. G. In vitro assembly properties of purified bacterially expressed capsid proteins of human immunodeficiency virus. Eur J Biochem. 1997 Oct 15;249(2):592–600. doi: 10.1111/j.1432-1033.1997.t01-1-00592.x. [DOI] [PubMed] [Google Scholar]
- Gross I., Hohenberg H., Wilk T., Wiegers K., Grättinger M., Müller B., Fuller S., Kräusslich H. G. A conformational switch controlling HIV-1 morphogenesis. EMBO J. 2000 Jan 4;19(1):103–113. doi: 10.1093/emboj/19.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marsh M. The entry of enveloped viruses into cells by endocytosis. Biochem J. 1984 Feb 15;218(1):1–10. doi: 10.1042/bj2180001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maréchal V., Clavel F., Heard J. M., Schwartz O. Cytosolic Gag p24 as an index of productive entry of human immunodeficiency virus type 1. J Virol. 1998 Mar;72(3):2208–2212. doi: 10.1128/jvi.72.3.2208-2212.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Misselwitz R., Hausdorf G., Welfle K., Höhne W. E., Welfle H. Conformation and stability of recombinant HIV-1 capsid protein p24 (rp24). Biochim Biophys Acta. 1995 Jul 3;1250(1):9–18. doi: 10.1016/0167-4838(95)00041-r. [DOI] [PubMed] [Google Scholar]
- Momany C., Kovari L. C., Prongay A. J., Keller W., Gitti R. K., Lee B. M., Gorbalenya A. E., Tong L., McClure J., Ehrlich L. S. Crystal structure of dimeric HIV-1 capsid protein. Nat Struct Biol. 1996 Sep;3(9):763–770. doi: 10.1038/nsb0996-763. [DOI] [PubMed] [Google Scholar]
- Phelps D. K., Speelman B., Post C. B. Theoretical studies of viral capsid proteins. Curr Opin Struct Biol. 2000 Apr;10(2):170–173. doi: 10.1016/s0959-440x(00)00064-6. [DOI] [PubMed] [Google Scholar]
- Provencher S. W. A Fourier method for the analysis of exponential decay curves. Biophys J. 1976 Jan;16(1):27–41. doi: 10.1016/S0006-3495(76)85660-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosé S., Hensley P., O'Shannessy D. J., Culp J., Debouck C., Chaiken I. Characterization of HIV-1 p24 self-association using analytical affinity chromatography. Proteins. 1992 Apr;13(2):112–119. doi: 10.1002/prot.340130204. [DOI] [PubMed] [Google Scholar]
- Schaeffer E., Geleziunas R., Greene W. C. Human immunodeficiency virus type 1 Nef functions at the level of virus entry by enhancing cytoplasmic delivery of virions. J Virol. 2001 Mar;75(6):2993–3000. doi: 10.1128/JVI.75.6.2993-3000.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Welker R., Hohenberg H., Tessmer U., Huckhagel C., Kräusslich H. G. Biochemical and structural analysis of isolated mature cores of human immunodeficiency virus type 1. J Virol. 2000 Feb;74(3):1168–1177. doi: 10.1128/jvi.74.3.1168-1177.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang A. S., Honig B. On the pH dependence of protein stability. J Mol Biol. 1993 May 20;231(2):459–474. doi: 10.1006/jmbi.1993.1294. [DOI] [PubMed] [Google Scholar]
- Yoo S., Myszka D. G., Yeh C., McMurray M., Hill C. P., Sundquist W. I. Molecular recognition in the HIV-1 capsid/cyclophilin A complex. J Mol Biol. 1997 Jun 27;269(5):780–795. doi: 10.1006/jmbi.1997.1051. [DOI] [PubMed] [Google Scholar]
- von Schwedler U. K., Stemmler T. L., Klishko V. Y., Li S., Albertine K. H., Davis D. R., Sundquist W. I. Proteolytic refolding of the HIV-1 capsid protein amino-terminus facilitates viral core assembly. EMBO J. 1998 Mar 16;17(6):1555–1568. doi: 10.1093/emboj/17.6.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
