Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Aug;81(2):614–629. doi: 10.1016/S0006-3495(01)75727-X

Model study of ATP and ADP buffering, transport of Ca(2+) and Mg(2+), and regulation of ion pumps in ventricular myocyte.

A Michailova 1, A McCulloch 1
PMCID: PMC1301539  PMID: 11463611

Abstract

We extended the model of the ventricular myocyte by Winslow et al. (Circ. Res 1999, 84:571-586) by incorporating equations for Ca(2+) and Mg(2+) buffering and transport by ATP and ADP and equations for MgATP regulation of ion transporters (Na(+)-K(+) pump, sarcolemmal and sarcoplasmic Ca(2+) pumps). The results indicate that, under normal conditions, Ca(2+) binding by low-affinity ATP and diffusion of CaATP may affect the amplitude and time course of intracellular Ca(2+) signals. The model also suggests that a fall in ATP/ADP ratio significantly reduces sarcoplasmic Ca(2+) content, increases diastolic Ca(2+), lowers systolic Ca(2+), increases Ca(2+) influx through L-type channels, and decreases the efficiency of the Na(+)/Ca(2+) exchanger in extruding Ca(2+) during periodic voltage-clamp stimulation. The analysis suggests that the most important reason for these changes during metabolic inhibition is the down-regulation of the sarcoplasmic Ca(2+)-ATPase pump by reduced diastolic MgATP levels. High Ca(2+) concentrations developed near the membrane might have a greater influence on Mg(2+), ATP, and ADP concentrations than that of the lower Ca(2+) concentrations in the bulk myoplasm. The model predictions are in general agreement with experimental observations measured under normal and pathological conditions.

Full Text

The Full Text of this article is available as a PDF (247.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bassani J. W., Yuan W., Bers D. M. Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. Am J Physiol. 1995 May;268(5 Pt 1):C1313–C1319. doi: 10.1152/ajpcell.1995.268.5.C1313. [DOI] [PubMed] [Google Scholar]
  2. Baylor S. M., Hollingworth S. Model of sarcomeric Ca2+ movements, including ATP Ca2+ binding and diffusion, during activation of frog skeletal muscle. J Gen Physiol. 1998 Sep;112(3):297–316. doi: 10.1085/jgp.112.3.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carmeliet E. Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev. 1999 Jul;79(3):917–1017. doi: 10.1152/physrev.1999.79.3.917. [DOI] [PubMed] [Google Scholar]
  4. Cascio W. E., Johnson T. A., Gettes L. S. Electrophysiologic changes in ischemic ventricular myocardium: I. Influence of ionic, metabolic, and energetic changes. J Cardiovasc Electrophysiol. 1995 Nov;6(11):1039–1062. doi: 10.1111/j.1540-8167.1995.tb00381.x. [DOI] [PubMed] [Google Scholar]
  5. Ch'en F. F., Vaughan-Jones R. D., Clarke K., Noble D. Modelling myocardial ischaemia and reperfusion. Prog Biophys Mol Biol. 1998;69(2-3):515–538. doi: 10.1016/s0079-6107(98)00023-6. [DOI] [PubMed] [Google Scholar]
  6. Ch'en F., Clarke K., Vaughan-Jones R., Noble D. Modeling of internal pH, ion concentration, and bioenergetic changes during myocardial ischemia. Adv Exp Med Biol. 1997;430:281–290. doi: 10.1007/978-1-4615-5959-7_24. [DOI] [PubMed] [Google Scholar]
  7. Dawson S. P., Keizer J., Pearson J. E. Fire-diffuse-fire model of dynamics of intracellular calcium waves. Proc Natl Acad Sci U S A. 1999 May 25;96(11):6060–6063. doi: 10.1073/pnas.96.11.6060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eager K. R., Dulhunty A. F. Activation of the cardiac ryanodine receptor by sulfhydryl oxidation is modified by Mg2+ and ATP. J Membr Biol. 1998 May 1;163(1):9–18. doi: 10.1007/s002329900365. [DOI] [PubMed] [Google Scholar]
  9. Faber G. M., Rudy Y. Action potential and contractility changes in [Na(+)](i) overloaded cardiac myocytes: a simulation study. Biophys J. 2000 May;78(5):2392–2404. doi: 10.1016/S0006-3495(00)76783-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fozzard H. A., Lipkind G. Ion channels and pumps in cardiac function. Adv Exp Med Biol. 1995;382:3–10. doi: 10.1007/978-1-4615-1893-8_1. [DOI] [PubMed] [Google Scholar]
  11. Griese M., Perlitz V., Jüngling E., Kammermeier H. Myocardial performance and free energy of ATP-hydrolysis in isolated rat hearts during graded hypoxia, reoxygenation and high Ke+-perfusion. J Mol Cell Cardiol. 1988 Dec;20(12):1189–1201. doi: 10.1016/0022-2828(88)90598-6. [DOI] [PubMed] [Google Scholar]
  12. Hunter P. J., McCulloch A. D., ter Keurs H. E. Modelling the mechanical properties of cardiac muscle. Prog Biophys Mol Biol. 1998;69(2-3):289–331. doi: 10.1016/s0079-6107(98)00013-3. [DOI] [PubMed] [Google Scholar]
  13. Hüser J., Lipsius S. L., Blatter L. A. Calcium gradients during excitation-contraction coupling in cat atrial myocytes. J Physiol. 1996 Aug 1;494(Pt 3):641–651. doi: 10.1113/jphysiol.1996.sp021521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hüser J., Wang Y. G., Sheehan K. A., Cifuentes F., Lipsius S. L., Blatter L. A. Functional coupling between glycolysis and excitation-contraction coupling underlies alternans in cat heart cells. J Physiol. 2000 May 1;524(Pt 3):795–806. doi: 10.1111/j.1469-7793.2000.00795.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Imredy J. P., Yue D. T. Mechanism of Ca(2+)-sensitive inactivation of L-type Ca2+ channels. Neuron. 1994 Jun;12(6):1301–1318. doi: 10.1016/0896-6273(94)90446-4. [DOI] [PubMed] [Google Scholar]
  16. Isenberg G., Han S., Schiefer A., Wendt-Gallitelli M. F. Changes in mitochondrial calcium concentration during the cardiac contraction cycle. Cardiovasc Res. 1993 Oct;27(10):1800–1809. doi: 10.1093/cvr/27.10.1800. [DOI] [PubMed] [Google Scholar]
  17. Jafri M. S., Rice J. J., Winslow R. L. Cardiac Ca2+ dynamics: the roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophys J. 1998 Mar;74(3):1149–1168. doi: 10.1016/S0006-3495(98)77832-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Janczewski A. M., Spurgeon H. A., Stern M. D., Lakatta E. G. Effects of sarcoplasmic reticulum Ca2+ load on the gain function of Ca2+ release by Ca2+ current in cardiac cells. Am J Physiol. 1995 Feb;268(2 Pt 2):H916–H920. doi: 10.1152/ajpheart.1995.268.2.H916. [DOI] [PubMed] [Google Scholar]
  19. Kargacin M. E., Kargacin G. J. Predicted changes in concentrations of free and bound ATP and ADP during intracellular Ca2+ signaling. Am J Physiol. 1997 Oct;273(4 Pt 1):C1416–C1426. doi: 10.1152/ajpcell.1997.273.4.C1416. [DOI] [PubMed] [Google Scholar]
  20. Keizer J., Levine L. Ryanodine receptor adaptation and Ca2+(-)induced Ca2+ release-dependent Ca2+ oscillations. Biophys J. 1996 Dec;71(6):3477–3487. doi: 10.1016/S0006-3495(96)79543-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kirkels J. H., van Echteld C. J., Ruigrok T. J. Intracellular magnesium during myocardial ischemia and reperfusion: possible consequences for postischemic recovery. J Mol Cell Cardiol. 1989 Nov;21(11):1209–1218. doi: 10.1016/0022-2828(89)90697-4. [DOI] [PubMed] [Google Scholar]
  22. Kléber A. G. Resting membrane potential, extracellular potassium activity, and intracellular sodium activity during acute global ischemia in isolated perfused guinea pig hearts. Circ Res. 1983 Apr;52(4):442–450. doi: 10.1161/01.res.52.4.442. [DOI] [PubMed] [Google Scholar]
  23. Langer G. A., Peskoff A. Calcium concentration and movement in the diadic cleft space of the cardiac ventricular cell. Biophys J. 1996 Mar;70(3):1169–1182. doi: 10.1016/S0006-3495(96)79677-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Leyssens A., Nowicky A. V., Patterson L., Crompton M., Duchen M. R. The relationship between mitochondrial state, ATP hydrolysis, [Mg2+]i and [Ca2+]i studied in isolated rat cardiomyocytes. J Physiol. 1996 Oct 1;496(Pt 1):111–128. doi: 10.1113/jphysiol.1996.sp021669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lipp P., Niggli E. Submicroscopic calcium signals as fundamental events of excitation--contraction coupling in guinea-pig cardiac myocytes. J Physiol. 1996 Apr 1;492(Pt 1):31–38. doi: 10.1113/jphysiol.1996.sp021286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Luo C. H., Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res. 1994 Jun;74(6):1071–1096. doi: 10.1161/01.res.74.6.1071. [DOI] [PubMed] [Google Scholar]
  27. Manning A. S., Hearse D. J. Reperfusion-induced arrhythmias: mechanisms and prevention. J Mol Cell Cardiol. 1984 Jun;16(6):497–518. doi: 10.1016/s0022-2828(84)80638-0. [DOI] [PubMed] [Google Scholar]
  28. Marban E., Kitakaze M., Koretsune Y., Yue D. T., Chacko V. P., Pike M. M. Quantification of [Ca2+]i in perfused hearts. Critical evaluation of the 5F-BAPTA and nuclear magnetic resonance method as applied to the study of ischemia and reperfusion. Circ Res. 1990 May;66(5):1255–1267. doi: 10.1161/01.res.66.5.1255. [DOI] [PubMed] [Google Scholar]
  29. Martin B. J., Valdivia H. H., Bünger R., Lasley R. D., Mentzer R. M., Jr Pyruvate augments calcium transients and cell shortening in rat ventricular myocytes. Am J Physiol. 1998 Jan;274(1 Pt 2):H8–17. doi: 10.1152/ajpheart.1998.274.1.H8. [DOI] [PubMed] [Google Scholar]
  30. Michailova A. P., Spassov V. Z. Theoretical model and computer simulation of excitation-contraction coupling of mammalian cardiac muscle. J Mol Cell Cardiol. 1992 Jan;24(1):97–104. doi: 10.1016/0022-2828(92)91163-y. [DOI] [PubMed] [Google Scholar]
  31. Murphy E., Steenbergen C., Levy L. A., Raju B., London R. E. Cytosolic free magnesium levels in ischemic rat heart. J Biol Chem. 1989 Apr 5;264(10):5622–5627. [PubMed] [Google Scholar]
  32. Negroni J. A., Lascano E. C. A cardiac muscle model relating sarcomere dynamics to calcium kinetics. J Mol Cell Cardiol. 1996 May;28(5):915–929. doi: 10.1006/jmcc.1996.0086. [DOI] [PubMed] [Google Scholar]
  33. Niggli E., Lipp P. Subcellular restricted spaces: significance for cell signalling and excitation-contraction coupling. J Muscle Res Cell Motil. 1993 Jun;14(3):288–291. doi: 10.1007/BF00123093. [DOI] [PubMed] [Google Scholar]
  34. Niggli E. Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks. Annu Rev Physiol. 1999;61:311–335. doi: 10.1146/annurev.physiol.61.1.311. [DOI] [PubMed] [Google Scholar]
  35. Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983 Sep 8;305(5930):147–148. doi: 10.1038/305147a0. [DOI] [PubMed] [Google Scholar]
  36. Noma A., Shibasaki T. Membrane current through adenosine-triphosphate-regulated potassium channels in guinea-pig ventricular cells. J Physiol. 1985 Jun;363:463–480. doi: 10.1113/jphysiol.1985.sp015722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Nygren A., Fiset C., Firek L., Clark J. W., Lindblad D. S., Clark R. B., Giles W. R. Mathematical model of an adult human atrial cell: the role of K+ currents in repolarization. Circ Res. 1998 Jan 9;82(1):63–81. doi: 10.1161/01.res.82.1.63. [DOI] [PubMed] [Google Scholar]
  38. O'Rourke B., Kass D. A., Tomaselli G. F., Käb S., Tunin R., Marbán E. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ Res. 1999 Mar 19;84(5):562–570. doi: 10.1161/01.res.84.5.562. [DOI] [PubMed] [Google Scholar]
  39. Orchard C. H., Kentish J. C. Effects of changes of pH on the contractile function of cardiac muscle. Am J Physiol. 1990 Jun;258(6 Pt 1):C967–C981. doi: 10.1152/ajpcell.1990.258.6.C967. [DOI] [PubMed] [Google Scholar]
  40. Peskoff A., Langer G. A. Calcium concentration and movement in the ventricular cardiac cell during an excitation-contraction cycle. Biophys J. 1998 Jan;74(1):153–174. doi: 10.1016/S0006-3495(98)77776-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rice J. J., Jafri M. S., Winslow R. L. Modeling gain and gradedness of Ca2+ release in the functional unit of the cardiac diadic space. Biophys J. 1999 Oct;77(4):1871–1884. doi: 10.1016/s0006-3495(99)77030-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Robertson S. P., Johnson J. D., Potter J. D. The time-course of Ca2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca2+. Biophys J. 1981 Jun;34(3):559–569. doi: 10.1016/S0006-3495(81)84868-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Shaw R. M., Rudy Y. Electrophysiologic effects of acute myocardial ischemia: a theoretical study of altered cell excitability and action potential duration. Cardiovasc Res. 1997 Aug;35(2):256–272. doi: 10.1016/s0008-6363(97)00093-x. [DOI] [PubMed] [Google Scholar]
  44. Soeller C., Cannell M. B. Numerical simulation of local calcium movements during L-type calcium channel gating in the cardiac diad. Biophys J. 1997 Jul;73(1):97–111. doi: 10.1016/S0006-3495(97)78051-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Stern M. D. Theory of excitation-contraction coupling in cardiac muscle. Biophys J. 1992 Aug;63(2):497–517. doi: 10.1016/S0006-3495(92)81615-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wagner S., Wu S. T., Parmley W. W., Wikman-Coffelt J. Influence of ischemia on [Ca2+]i transients following drug therapy in hearts from aortic constricted rats. Cell Calcium. 1990 Jun-Jul;11(6):431–444. doi: 10.1016/0143-4160(90)90056-z. [DOI] [PubMed] [Google Scholar]
  47. Wilde A. A., Aksnes G. Myocardial potassium loss and cell depolarisation in ischaemia and hypoxia. Cardiovasc Res. 1995 Jan;29(1):1–15. [PubMed] [Google Scholar]
  48. Winslow R. L., Rice J., Jafri S., Marbán E., O'Rourke B. Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. Circ Res. 1999 Mar 19;84(5):571–586. doi: 10.1161/01.res.84.5.571. [DOI] [PubMed] [Google Scholar]
  49. Winslow R. L., Rice J., Jafri S. Modeling the cellular basis of altered excitation-contraction coupling in heart failure. Prog Biophys Mol Biol. 1998;69(2-3):497–514. doi: 10.1016/s0079-6107(98)00022-4. [DOI] [PubMed] [Google Scholar]
  50. Wright A. R., Rees S. A. Targeting ischaemia--cell swelling and drug efficacy. Trends Pharmacol Sci. 1997 Jul;18(7):224–228. doi: 10.1016/s0165-6147(97)01078-x. [DOI] [PubMed] [Google Scholar]
  51. Yokoshiki H., Sunagawa M., Seki T., Sperelakis N. ATP-sensitive K+ channels in pancreatic, cardiac, and vascular smooth muscle cells. Am J Physiol. 1998 Jan;274(1 Pt 1):C25–C37. doi: 10.1152/ajpcell.1998.274.1.C25. [DOI] [PubMed] [Google Scholar]
  52. Zhou Z., Neher E. Mobile and immobile calcium buffers in bovine adrenal chromaffin cells. J Physiol. 1993 Sep;469:245–273. doi: 10.1113/jphysiol.1993.sp019813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Zoghbi M. E., Bolaños P., Villalba-Galea C., Marcano A., Hernández E., Fill M., Escobar A. L. Spatial Ca(2+) distribution in contracting skeletal and cardiac muscle cells. Biophys J. 2000 Jan;78(1):164–173. doi: 10.1016/S0006-3495(00)76582-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES