Abstract
A 2200-ps molecular dynamics (MD) simulation of the U2 snRNA hairpin IV/U2B" complex was performed in aqueous solution using the particle mesh Ewald method to consider long-range electrostatic interactions. To investigate the interaction and recognition process between the RNA and protein, the free energy contributions resulting from individual amino acids of the protein component of the RNA/protein complex were calculated using the recently developed glycine-scanning method. The results revealed that the loop region of the U2 snRNA hairpin IV interacted mainly with three regions of the U2B" protein: 1) beta 1-helix A, 2) beta 2-beta 3, and 3) beta 4-helix C. U2 snRNA hairpin IV bound U2B" in a similar orientation as that previously described for U1 snRNA with the U1A' protein; however, the details of the interaction differed in several aspects. In particular, beta 1-helix A and beta 4-helix C in U2B" were not observed to interact with RNA in the U1A' protein complex. Most of the polar and charged residues in the interacting regions had larger mutant free energies than the nonpolar residues, indicating that electrostatic interactions were important for stabilizing the RNA/protein complex. The interaction was further stabilized by a network of hydrogen bonds and salt bridges formed between RNA and protein that was maintained throughout the MD trajectory. In addition to the direct interactions between RNA and the protein, solvent-mediated interactions also contributed significantly to complex stability. A detailed analysis of the ordered water molecules in the hydration of the RNA/protein complex revealed that bridged water molecules reside at the interface of RNA and protein as long as 2100 ps in the 2200-ps trajectory. At least 20 bridged water molecules, on average, contributed to the instantaneous stability of the RNA/protein complex. The stabilizing interaction energy due to bridging water molecules was obtained from ab initio Hartree-Fock and density functional theory calculations.
Full Text
The Full Text of this article is available as a PDF (524.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Antson A. A. Single-stranded-RNA binding proteins. Curr Opin Struct Biol. 2000 Feb;10(1):87–94. doi: 10.1016/s0959-440x(99)00054-8. [DOI] [PubMed] [Google Scholar]
- Boelens W., Scherly D., Beijer R. P., Jansen E. J., Dathan N. A., Mattaj I. W., van Venrooij W. J. A weak interaction between the U2A' protein and U2 snRNA helps to stabilize their complex with the U2B" protein. Nucleic Acids Res. 1991 Feb 11;19(3):455–460. doi: 10.1093/nar/19.3.455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bogan A. A., Thorn K. S. Anatomy of hot spots in protein interfaces. J Mol Biol. 1998 Jul 3;280(1):1–9. doi: 10.1006/jmbi.1998.1843. [DOI] [PubMed] [Google Scholar]
- Burd C. G., Dreyfuss G. Conserved structures and diversity of functions of RNA-binding proteins. Science. 1994 Jul 29;265(5172):615–621. doi: 10.1126/science.8036511. [DOI] [PubMed] [Google Scholar]
- Cusack S. RNA-protein complexes. Curr Opin Struct Biol. 1999 Feb;9(1):66–73. doi: 10.1016/s0959-440x(99)80009-8. [DOI] [PubMed] [Google Scholar]
- Gallivan J. P., Dougherty D. A. Cation-pi interactions in structural biology. Proc Natl Acad Sci U S A. 1999 Aug 17;96(17):9459–9464. doi: 10.1073/pnas.96.17.9459. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gordon J., Sengupta T. K., Phillips C. A., O'Malley S. M., Williams K. R., Spicer E. K. Identification of the RNA binding domain of T4 RegA protein by structure-based mutagenesis. J Biol Chem. 1999 Nov 5;274(45):32265–32273. doi: 10.1074/jbc.274.45.32265. [DOI] [PubMed] [Google Scholar]
- Guo J., Daizadeh I., Gmeiner W. H. Structure of the Sm binding site from human U4 snRNA derived from a 3 ns PME molecular dynamics simulation. J Biomol Struct Dyn. 2000 Dec;18(3):335–344. doi: 10.1080/07391102.2000.10506670. [DOI] [PubMed] [Google Scholar]
- Handa N., Nureki O., Kurimoto K., Kim I., Sakamoto H., Shimura Y., Muto Y., Yokoyama S. Structural basis for recognition of the tra mRNA precursor by the Sex-lethal protein. Nature. 1999 Apr 15;398(6728):579–585. doi: 10.1038/19242. [DOI] [PubMed] [Google Scholar]
- Harada N., Maemura K., Yamasaki N., Kimura M. Identification by site-directed mutagenesis of amino acid residues in ribosomal protein L2 that are essential for binding to 23S ribosomal RNA. Biochim Biophys Acta. 1998 Dec 8;1429(1):176–186. doi: 10.1016/s0167-4838(98)00230-1. [DOI] [PubMed] [Google Scholar]
- Jensen A. A., Sheppard P. O., Jensen L. B., O'Hara P. J., Bräuner-Osborne H. Construction of a high affinity zinc binding site in the metabotropic glutamate receptor mGluR1: noncompetitive antagonism originating from the amino-terminal domain of a family C G-protein-coupled receptor. J Biol Chem. 2000 Dec 22;276(13):10110–10118. doi: 10.1074/jbc.M007220200. [DOI] [PubMed] [Google Scholar]
- Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988 Jan 15;37(2):785–789. doi: 10.1103/physrevb.37.785. [DOI] [PubMed] [Google Scholar]
- Lundquist A. J., Beger R. D., Bennett S. E., Bolton P. H., Mosbaugh D. W. Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J Biol Chem. 1997 Aug 22;272(34):21408–21419. doi: 10.1074/jbc.272.34.21408. [DOI] [PubMed] [Google Scholar]
- Mattaj I. W. RNA recognition: a family matter? Cell. 1993 Jun 4;73(5):837–840. doi: 10.1016/0092-8674(93)90265-r. [DOI] [PubMed] [Google Scholar]
- Nagai K. RNA-protein complexes. Curr Opin Struct Biol. 1996 Feb;6(1):53–61. doi: 10.1016/s0959-440x(96)80095-9. [DOI] [PubMed] [Google Scholar]
- O'Neill M., Dryden D. T., Murray N. E. Localization of a protein-DNA interface by random mutagenesis. EMBO J. 1998 Dec 1;17(23):7118–7127. doi: 10.1093/emboj/17.23.7118. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oubridge C., Ito N., Evans P. R., Teo C. H., Nagai K. Crystal structure at 1.92 A resolution of the RNA-binding domain of the U1A spliceosomal protein complexed with an RNA hairpin. Nature. 1994 Dec 1;372(6505):432–438. doi: 10.1038/372432a0. [DOI] [PubMed] [Google Scholar]
- Price S. R., Evans P. R., Nagai K. Crystal structure of the spliceosomal U2B"-U2A' protein complex bound to a fragment of U2 small nuclear RNA. Nature. 1998 Aug 13;394(6694):645–650. doi: 10.1038/29234. [DOI] [PubMed] [Google Scholar]
- Reyes C. M., Kollman P. A. Investigating the binding specificity of U1A-RNA by computational mutagenesis. J Mol Biol. 2000 Jan 7;295(1):1–6. doi: 10.1006/jmbi.1999.3319. [DOI] [PubMed] [Google Scholar]
- Reyes C. M., Kollman P. A. Molecular dynamics studies of U1A-RNA complexes. RNA. 1999 Feb;5(2):235–244. doi: 10.1017/s1355838299981657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reyes C. M., Kollman P. A. Structure and thermodynamics of RNA-protein binding: using molecular dynamics and free energy analyses to calculate the free energies of binding and conformational change. J Mol Biol. 2000 Apr 14;297(5):1145–1158. doi: 10.1006/jmbi.2000.3629. [DOI] [PubMed] [Google Scholar]
- Sanner M. F., Olson A. J., Spehner J. C. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers. 1996 Mar;38(3):305–320. doi: 10.1002/(SICI)1097-0282(199603)38:3%3C305::AID-BIP4%3E3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
- Scherly D., Boelens W., Dathan N. A., van Venrooij W. J., Mattaj I. W. Major determinants of the specificity of interaction between small nuclear ribonucleoproteins U1A and U2B'' and their cognate RNAs. Nature. 1990 Jun 7;345(6275):502–506. doi: 10.1038/345502a0. [DOI] [PubMed] [Google Scholar]
- Schwabe J. W. The role of water in protein-DNA interactions. Curr Opin Struct Biol. 1997 Feb;7(1):126–134. doi: 10.1016/s0959-440x(97)80016-4. [DOI] [PubMed] [Google Scholar]
- Sheinerman F. B., Norel R., Honig B. Electrostatic aspects of protein-protein interactions. Curr Opin Struct Biol. 2000 Apr;10(2):153–159. doi: 10.1016/s0959-440x(00)00065-8. [DOI] [PubMed] [Google Scholar]
- Sponer J., Burda J. V., Mejzlík P., Leszczynski J., Hobza P. Hydrogen-bonded trimers of DNA bases and their interaction with metal cations: ab initio quantum-chemical and empirical potential study. J Biomol Struct Dyn. 1997 Apr;14(5):613–628. doi: 10.1080/07391102.1997.10508161. [DOI] [PubMed] [Google Scholar]
- Sunnerhagen M., Denisov V. P., Venu K., Bonvin A. M., Carey J., Halle B., Otting G. Water molecules in DNA recognition I: hydration lifetimes of trp operator DNA in solution measured by NMR spectroscopy. J Mol Biol. 1998 Oct 2;282(4):847–858. doi: 10.1006/jmbi.1998.2033. [DOI] [PubMed] [Google Scholar]
- Tang Y., Nilsson L. Molecular dynamics simulations of the complex between human U1A protein and hairpin II of U1 small nuclear RNA and of free RNA in solution. Biophys J. 1999 Sep;77(3):1284–1305. doi: 10.1016/S0006-3495(99)76979-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uhlenbeck O. C., Pardi A., Feigon J. RNA structure comes of age. Cell. 1997 Sep 5;90(5):833–840. doi: 10.1016/s0092-8674(00)80348-7. [DOI] [PubMed] [Google Scholar]