Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Aug;81(2):643–658. doi: 10.1016/S0006-3495(01)75729-3

Interactions of cholesterol with lipid bilayers: the preferred configuration and fluctuations.

A Kessel 1, N Ben-Tal 1, S May 1
PMCID: PMC1301541  PMID: 11463613

Abstract

The free energy difference associated with the transfer of a single cholesterol molecule from the aqueous phase into a lipid bilayer depends on its final location, namely on its insertion depth and orientation within the bilayer. We calculated desolvation and lipid bilayer perturbation contributions to the water-to-membrane transfer free energy, thus allowing us to determine the most favorable location of cholesterol in the membrane and the extent of fluctuations around it. The electrostatic and nonpolar contributions to the solvation free energy were calculated using continuum solvent models. Lipid layer perturbations, resulting from both conformational restrictions of the lipid chains in the vicinity of the (rigid) cholesterol backbone and from cholesterol-induced elastic deformations, were calculated using a simple director model and elasticity theory, respectively. As expected from the amphipathic nature of cholesterol and in agreement with the available experimental data, our results show that at the energetically favorable state, cholesterol's hydrophobic core is buried within the hydrocarbon region of the bilayer. At this state, cholesterol spans approximately one leaflet of the membrane, with its OH group protruding into the polar (headgroup) region of the bilayer, thus avoiding an electrostatic desolvation penalty. We found that the transfer of cholesterol into a membrane is mainly driven by the favorable nonpolar contributions to the solvation free energy, whereas only a small opposing contribution is caused by conformational restrictions of the lipid chains. Our calculations also predict a strong tendency of the lipid layer to elastically respond to (thermally excited) vertical fluctuations of cholesterol so as to fully match the hydrophobic height of the solute. However, orientational fluctuations of cholesterol were found to be accompanied by both an elastic adjustment of the surrounding lipids and by a partial exposure of the hydrophobic cholesterol backbone to the polar (headgroup) environment. Our calculations of the molecular order parameter, which reflects the extent of orientational fluctuations of cholesterol in the membrane, are in good agreement with available experimental data.

Full Text

The Full Text of this article is available as a PDF (288.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aranda-Espinoza H., Berman A., Dan N., Pincus P., Safran S. Interaction between inclusions embedded in membranes. Biophys J. 1996 Aug;71(2):648–656. doi: 10.1016/S0006-3495(96)79265-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ashcroft R. G., Coster H. G., Smith J. R. The molecular organisation of bimolecular lipid membranes. The dielectric structure of the hydrophilic/hydrophobic interface. Biochim Biophys Acta. 1981 Apr 22;643(1):191–204. doi: 10.1016/0005-2736(81)90232-7. [DOI] [PubMed] [Google Scholar]
  3. Ben-Shaul A., Ben-Tal N., Honig B. Statistical thermodynamic analysis of peptide and protein insertion into lipid membranes. Biophys J. 1996 Jul;71(1):130–137. doi: 10.1016/S0006-3495(96)79208-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ben-Tal N., Ben-Shaul A., Nicholls A., Honig B. Free-energy determinants of alpha-helix insertion into lipid bilayers. Biophys J. 1996 Apr;70(4):1803–1812. doi: 10.1016/S0006-3495(96)79744-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ben-Tal N., Honig B., Miller C., McLaughlin S. Electrostatic binding of proteins to membranes. Theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles. Biophys J. 1997 Oct;73(4):1717–1727. doi: 10.1016/S0006-3495(97)78203-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ben-Tal N., Sitkoff D., Bransburg-Zabary S., Nachliel E., Gutman M. Theoretical calculations of the permeability of monensin-cation complexes in model bio-membranes. Biochim Biophys Acta. 2000 Jun 1;1466(1-2):221–233. doi: 10.1016/s0005-2736(00)00156-5. [DOI] [PubMed] [Google Scholar]
  7. Bernèche S., Nina M., Roux B. Molecular dynamics simulation of melittin in a dimyristoylphosphatidylcholine bilayer membrane. Biophys J. 1998 Oct;75(4):1603–1618. doi: 10.1016/S0006-3495(98)77604-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Biggin P. C., Breed J., Son H. S., Sansom M. S. Simulation studies of alamethicin-bilayer interactions. Biophys J. 1997 Feb;72(2 Pt 1):627–636. doi: 10.1016/s0006-3495(97)78701-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brzustowicz M. R., Stillwell W., Wassall S. R. Molecular organization of cholesterol in polyunsaturated phospholipid membranes: a solid state 2H NMR investigation. FEBS Lett. 1999 May 21;451(2):197–202. doi: 10.1016/s0014-5793(99)00567-0. [DOI] [PubMed] [Google Scholar]
  10. Corvera E., Mouritsen O. G., Singer M. A., Zuckermann M. J. The permeability and the effect of acyl-chain length for phospholipid bilayers containing cholesterol: theory and experiment. Biochim Biophys Acta. 1992 Jun 30;1107(2):261–270. doi: 10.1016/0005-2736(92)90413-g. [DOI] [PubMed] [Google Scholar]
  11. Dumas F., Lebrun M. C., Tocanne J. F. Is the protein/lipid hydrophobic matching principle relevant to membrane organization and functions? FEBS Lett. 1999 Sep 24;458(3):271–277. doi: 10.1016/s0014-5793(99)01148-5. [DOI] [PubMed] [Google Scholar]
  12. Efremov R. G., Nolde D. E., Vergoten G., Arseniev A. S. A solvent model for simulations of peptides in bilayers. I. Membrane-promoting alpha-helix formation. Biophys J. 1999 May;76(5):2448–2459. doi: 10.1016/S0006-3495(99)77400-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Engelman D. M., Steitz T. A. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell. 1981 Feb;23(2):411–422. doi: 10.1016/0092-8674(81)90136-7. [DOI] [PubMed] [Google Scholar]
  14. Fattal D. R., Ben-Shaul A. A molecular model for lipid-protein interaction in membranes: the role of hydrophobic mismatch. Biophys J. 1993 Nov;65(5):1795–1809. doi: 10.1016/S0006-3495(93)81249-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Franks N. P., Lieb W. R. The structure of lipid bilayers and the effects of general anaesthetics. An x-ray and neutron diffraction study. J Mol Biol. 1979 Oct 9;133(4):469–500. doi: 10.1016/0022-2836(79)90403-0. [DOI] [PubMed] [Google Scholar]
  16. Gilbert D. B., Tanford C., Reynolds J. A. Cholesterol in aqueous solution: hydrophobicity and self-association. Biochemistry. 1975 Jan 28;14(2):444–448. doi: 10.1021/bi00673a035. [DOI] [PubMed] [Google Scholar]
  17. Gilson M. K. Theory of electrostatic interactions in macromolecules. Curr Opin Struct Biol. 1995 Apr;5(2):216–223. doi: 10.1016/0959-440x(95)80079-4. [DOI] [PubMed] [Google Scholar]
  18. Gliss C., Randel O., Casalta H., Sackmann E., Zorn R., Bayerl T. Anisotropic motion of cholesterol in oriented DPPC bilayers studied by quasielastic neutron scattering: the liquid-ordered phase. Biophys J. 1999 Jul;77(1):331–340. doi: 10.1016/S0006-3495(99)76893-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Harroun T. A., Heller W. T., Weiss T. M., Yang L., Huang H. W. Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys J. 1999 Jun;76(6):3176–3185. doi: 10.1016/S0006-3495(99)77469-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Helfrich W. Elastic properties of lipid bilayers: theory and possible experiments. Z Naturforsch C. 1973 Nov-Dec;28(11):693–703. doi: 10.1515/znc-1973-11-1209. [DOI] [PubMed] [Google Scholar]
  21. Helfrich W, Prost J. Intrinsic bending force in anisotropic membranes made of chiral molecules. Phys Rev A Gen Phys. 1988 Sep 15;38(6):3065–3068. doi: 10.1103/physreva.38.3065. [DOI] [PubMed] [Google Scholar]
  22. Honig B., Nicholls A. Classical electrostatics in biology and chemistry. Science. 1995 May 26;268(5214):1144–1149. doi: 10.1126/science.7761829. [DOI] [PubMed] [Google Scholar]
  23. Huang J., Feigenson G. W. A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophys J. 1999 Apr;76(4):2142–2157. doi: 10.1016/S0006-3495(99)77369-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jähnig F. Thermodynamics and kinetics of protein incorporation into membranes. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3691–3695. doi: 10.1073/pnas.80.12.3691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kessel A., Cafiso D. S., Ben-Tal N. Continuum solvent model calculations of alamethicin-membrane interactions: thermodynamic aspects. Biophys J. 2000 Feb;78(2):571–583. doi: 10.1016/S0006-3495(00)76617-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Killian J. A. Hydrophobic mismatch between proteins and lipids in membranes. Biochim Biophys Acta. 1998 Nov 10;1376(3):401–415. doi: 10.1016/s0304-4157(98)00017-3. [DOI] [PubMed] [Google Scholar]
  27. Kurze V., Steinbauer B., Huber T., Beyer K. A (2)H NMR study of macroscopically aligned bilayer membranes containing interfacial hydroxyl residues. Biophys J. 2000 May;78(5):2441–2451. doi: 10.1016/S0006-3495(00)76788-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. MacKintosh FC, Lubensky TC. Orientational order, topology, and vesicle shapes. Phys Rev Lett. 1991 Aug 26;67(9):1169–1172. doi: 10.1103/PhysRevLett.67.1169. [DOI] [PubMed] [Google Scholar]
  29. Marsan M. P., Muller I., Ramos C., Rodriguez F., Dufourc E. J., Czaplicki J., Milon A. Cholesterol orientation and dynamics in dimyristoylphosphatidylcholine bilayers: a solid state deuterium NMR analysis. Biophys J. 1999 Jan;76(1 Pt 1):351–359. doi: 10.1016/S0006-3495(99)77202-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. May S., Ben-Shaul A. Molecular theory of lipid-protein interaction and the Lalpha-HII transition. Biophys J. 1999 Feb;76(2):751–767. doi: 10.1016/S0006-3495(99)77241-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. May S. Protein-induced bilayer deformations: the lipid tilt degree of freedom. Eur Biophys J. 2000;29(1):17–28. doi: 10.1007/s002490050247. [DOI] [PubMed] [Google Scholar]
  32. Milik M., Skolnick J. Insertion of peptide chains into lipid membranes: an off-lattice Monte Carlo dynamics model. Proteins. 1993 Jan;15(1):10–25. doi: 10.1002/prot.340150104. [DOI] [PubMed] [Google Scholar]
  33. Mouritsen O. G., Bloom M. Mattress model of lipid-protein interactions in membranes. Biophys J. 1984 Aug;46(2):141–153. doi: 10.1016/S0006-3495(84)84007-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Murari R., Murari M. P., Baumann W. J. Sterol orientations in phosphatidylcholine liposomes as determined by deuterium NMR. Biochemistry. 1986 Mar 11;25(5):1062–1067. doi: 10.1021/bi00353a017. [DOI] [PubMed] [Google Scholar]
  35. Nakamura H. Roles of electrostatic interaction in proteins. Q Rev Biophys. 1996 Feb;29(1):1–90. doi: 10.1017/s0033583500005746. [DOI] [PubMed] [Google Scholar]
  36. Nielsen C., Goulian M., Andersen O. S. Energetics of inclusion-induced bilayer deformations. Biophys J. 1998 Apr;74(4):1966–1983. doi: 10.1016/S0006-3495(98)77904-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Oldfield E., Meadows M., Rice D., Jacobs R. Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of the effects of cholesterol in model systems. Biochemistry. 1978 Jul 11;17(14):2727–2740. doi: 10.1021/bi00607a006. [DOI] [PubMed] [Google Scholar]
  38. Pasenkiewicz-Gierula M., Róg T., Kitamura K., Kusumi A. Cholesterol effects on the phosphatidylcholine bilayer polar region: a molecular simulation study. Biophys J. 2000 Mar;78(3):1376–1389. doi: 10.1016/S0006-3495(00)76691-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pott T., Maillet J. C., Dufourc E. J. Effects of pH and cholesterol on DMPA membranes: a solid state 2H- and 31P-NMR study. Biophys J. 1995 Nov;69(5):1897–1908. doi: 10.1016/S0006-3495(95)80060-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Robinson A. J., Richards W. G., Thomas P. J., Hann M. M. Behavior of cholesterol and its effect on head group and chain conformations in lipid bilayers: a molecular dynamics study. Biophys J. 1995 Jan;68(1):164–170. doi: 10.1016/S0006-3495(95)80171-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Sankaram M. B., Thompson T. E. Cholesterol-induced fluid-phase immiscibility in membranes. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8686–8690. doi: 10.1073/pnas.88.19.8686. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sankaram M. B., Thompson T. E. Modulation of phospholipid acyl chain order by cholesterol. A solid-state 2H nuclear magnetic resonance study. Biochemistry. 1990 Nov 27;29(47):10676–10684. doi: 10.1021/bi00499a015. [DOI] [PubMed] [Google Scholar]
  43. Shrake A., Rupley J. A. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J Mol Biol. 1973 Sep 15;79(2):351–371. doi: 10.1016/0022-2836(73)90011-9. [DOI] [PubMed] [Google Scholar]
  44. Smondyrev A. M., Berkowitz M. L. Structure of dipalmitoylphosphatidylcholine/cholesterol bilayer at low and high cholesterol concentrations: molecular dynamics simulation. Biophys J. 1999 Oct;77(4):2075–2089. doi: 10.1016/S0006-3495(99)77049-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tu K., Klein M. L., Tobias D. J. Constant-pressure molecular dynamics investigation of cholesterol effects in a dipalmitoylphosphatidylcholine bilayer. Biophys J. 1998 Nov;75(5):2147–2156. doi: 10.1016/S0006-3495(98)77657-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Villalaín J. Location of cholesterol in model membranes by magic-angle-sample-spinning NMR. Eur J Biochem. 1996 Oct 15;241(2):586–593. doi: 10.1111/j.1432-1033.1996.00586.x. [DOI] [PubMed] [Google Scholar]
  47. Warshel A., Papazyan A. Electrostatic effects in macromolecules: fundamental concepts and practical modeling. Curr Opin Struct Biol. 1998 Apr;8(2):211–217. doi: 10.1016/s0959-440x(98)80041-9. [DOI] [PubMed] [Google Scholar]
  48. White S. H., Wimley W. C. Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct. 1999;28:319–365. doi: 10.1146/annurev.biophys.28.1.319. [DOI] [PubMed] [Google Scholar]
  49. Worcester D. L., Franks N. P. Structural analysis of hydrated egg lecithin and cholesterol bilayers. II. Neutrol diffraction. J Mol Biol. 1976 Jan 25;100(3):359–378. doi: 10.1016/s0022-2836(76)80068-x. [DOI] [PubMed] [Google Scholar]
  50. Yeagle P. L. Cholesterol and the cell membrane. Biochim Biophys Acta. 1985 Dec 9;822(3-4):267–287. doi: 10.1016/0304-4157(85)90011-5. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES