Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Aug;81(2):697–709. doi: 10.1016/S0006-3495(01)75734-7

Probing the origins of increased activity of the E22Q "Dutch" mutant Alzheimer's beta-amyloid peptide.

F Massi 1, J E Straub 1
PMCID: PMC1301546  PMID: 11463618

Abstract

The amyloid peptide congener A beta(10--35)-NH(2) is simulated in an aqueous environment in both the wild type (WT) and E22Q "Dutch" mutant forms. The origin of the noted increase in deposition activity resulting from the Dutch mutation is investigated. Multiple nanosecond time scale molecular dynamics trajectories were performed and analyzed using a variety of measures of the peptide's average structure, hydration, conformational fluctuations, and dynamics. The results of the study support the conclusions that 1) the E22Q mutant and WT peptide are both stable in "collapsed coil" conformations consistent with the WT structure of, J. Struct. Biol. 130:130--141); 2) the E22Q peptide is more flexible in solution, supporting early claims that its equilibrium structural fluctuations are larger than those of the WT peptide; and 3) the local E22Q mutation leads to a change in the first solvation layer in the region of the peptide's "hydrophobic patch," resulting in a more hydrophobic solvation of the mutant peptide. The simulation results support the view that the noted increase in activity due to the Dutch mutation results from an enhancement of the desolvation process that is an essential step in the aggregation of the peptide.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cheng Y. K., Rossky P. J. The effect of vicinal polar and charged groups on hydrophobic hydration. Biopolymers. 1999 Dec;50(7):742–750. doi: 10.1002/(SICI)1097-0282(199912)50:7<742::AID-BIP7>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  2. Cheng Y. K., Sheu W. S., Rossky P. J. Hydrophobic hydration of amphipathic peptides. Biophys J. 1999 Apr;76(4):1734–1743. doi: 10.1016/S0006-3495(99)77335-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Esler W. P., Felix A. M., Stimson E. R., Lachenmann M. J., Ghilardi J. R., Lu Y. A., Vinters H. V., Mantyh P. W., Lee J. P., Maggio J. E. Activation barriers to structural transition determine deposition rates of Alzheimer's disease a beta amyloid. J Struct Biol. 2000 Jun;130(2-3):174–183. doi: 10.1006/jsbi.2000.4276. [DOI] [PubMed] [Google Scholar]
  4. Esler W. P., Stimson E. R., Ghilardi J. R., Vinters H. V., Lee J. P., Mantyh P. W., Maggio J. E. In vitro growth of Alzheimer's disease beta-amyloid plaques displays first-order kinetics. Biochemistry. 1996 Jan 23;35(3):749–757. doi: 10.1021/bi951685w. [DOI] [PubMed] [Google Scholar]
  5. Esler W. P., Stimson E. R., Jennings J. M., Vinters H. V., Ghilardi J. R., Lee J. P., Mantyh P. W., Maggio J. E. Alzheimer's disease amyloid propagation by a template-dependent dock-lock mechanism. Biochemistry. 2000 May 30;39(21):6288–6295. doi: 10.1021/bi992933h. [DOI] [PubMed] [Google Scholar]
  6. Haliloglu T., Bahar I. Coarse-grained simulations of conformational dynamics of proteins: application to apomyoglobin. Proteins. 1998 May 15;31(3):271–281. [PubMed] [Google Scholar]
  7. Kusumoto Y., Lomakin A., Teplow D. B., Benedek G. B. Temperature dependence of amyloid beta-protein fibrillization. Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12277–12282. doi: 10.1073/pnas.95.21.12277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lee B., Richards F. M. The interpretation of protein structures: estimation of static accessibility. J Mol Biol. 1971 Feb 14;55(3):379–400. doi: 10.1016/0022-2836(71)90324-x. [DOI] [PubMed] [Google Scholar]
  9. Lee J. P., Stimson E. R., Ghilardi J. R., Mantyh P. W., Lu Y. A., Felix A. M., Llanos W., Behbin A., Cummings M., Van Criekinge M. 1H NMR of A beta amyloid peptide congeners in water solution. Conformational changes correlate with plaque competence. Biochemistry. 1995 Apr 18;34(15):5191–5200. doi: 10.1021/bi00015a033. [DOI] [PubMed] [Google Scholar]
  10. Massi F., Peng J. W., Lee J. P., Straub J. E. Simulation study of the structure and dynamics of the Alzheimer's amyloid peptide congener in solution. Biophys J. 2001 Jan;80(1):31–44. doi: 10.1016/S0006-3495(01)75993-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Massi F., Straub J. E. Energy landscape theory for Alzheimer's amyloid beta-peptide fibril elongation. Proteins. 2001 Feb 1;42(2):217–229. doi: 10.1002/1097-0134(20010201)42:2<217::aid-prot90>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  12. Melchor J. P., McVoy L., Van Nostrand W. E. Charge alterations of E22 enhance the pathogenic properties of the amyloid beta-protein. J Neurochem. 2000 May;74(5):2209–2212. doi: 10.1046/j.1471-4159.2000.0742209.x. [DOI] [PubMed] [Google Scholar]
  13. Miravalle L., Tokuda T., Chiarle R., Giaccone G., Bugiani O., Tagliavini F., Frangione B., Ghiso J. Substitutions at codon 22 of Alzheimer's abeta peptide induce diverse conformational changes and apoptotic effects in human cerebral endothelial cells. J Biol Chem. 2000 Sep 1;275(35):27110–27116. doi: 10.1074/jbc.M003154200. [DOI] [PubMed] [Google Scholar]
  14. Selkoe D. J. Alzheimer's disease: a central role for amyloid. J Neuropathol Exp Neurol. 1994 Sep;53(5):438–447. doi: 10.1097/00005072-199409000-00003. [DOI] [PubMed] [Google Scholar]
  15. Selkoe D. J. Alzheimer's disease: genotypes, phenotypes, and treatments. Science. 1997 Jan 31;275(5300):630–631. doi: 10.1126/science.275.5300.630. [DOI] [PubMed] [Google Scholar]
  16. Shao H., Jao S., Ma K., Zagorski M. G. Solution structures of micelle-bound amyloid beta-(1-40) and beta-(1-42) peptides of Alzheimer's disease. J Mol Biol. 1999 Jan 15;285(2):755–773. doi: 10.1006/jmbi.1998.2348. [DOI] [PubMed] [Google Scholar]
  17. Sian A. K., Frears E. R., El-Agnaf O. M., Patel B. P., Manca M. F., Siligardi G., Hussain R., Austen B. M. Oligomerization of beta-amyloid of the Alzheimer's and the Dutch-cerebral-haemorrhage types. Biochem J. 2000 Jul 1;349(Pt 1):299–308. doi: 10.1042/0264-6021:3490299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Talafous J., Marcinowski K. J., Klopman G., Zagorski M. G. Solution structure of residues 1-28 of the amyloid beta-peptide. Biochemistry. 1994 Jun 28;33(25):7788–7796. doi: 10.1021/bi00191a006. [DOI] [PubMed] [Google Scholar]
  19. Watson D. J., Lander A. D., Selkoe D. J. Heparin-binding properties of the amyloidogenic peptides Abeta and amylin. Dependence on aggregation state and inhibition by Congo red. J Biol Chem. 1997 Dec 12;272(50):31617–31624. doi: 10.1074/jbc.272.50.31617. [DOI] [PubMed] [Google Scholar]
  20. Wesson L., Eisenberg D. Atomic solvation parameters applied to molecular dynamics of proteins in solution. Protein Sci. 1992 Feb;1(2):227–235. doi: 10.1002/pro.5560010204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Zagorski M. G., Barrow C. J. NMR studies of amyloid beta-peptides: proton assignments, secondary structure, and mechanism of an alpha-helix----beta-sheet conversion for a homologous, 28-residue, N-terminal fragment. Biochemistry. 1992 Jun 23;31(24):5621–5631. doi: 10.1021/bi00139a028. [DOI] [PubMed] [Google Scholar]
  22. Zhang S., Casey N., Lee J. P. Residual structure in the Alzheimer's disease peptide: probing the origin of a central hydrophobic cluster. Fold Des. 1998;3(5):413–422. doi: 10.1016/S1359-0278(98)00054-6. [DOI] [PubMed] [Google Scholar]
  23. Zhang S., Iwata K., Lachenmann M. J., Peng J. W., Li S., Stimson E. R., Lu Y., Felix A. M., Maggio J. E., Lee J. P. The Alzheimer's peptide a beta adopts a collapsed coil structure in water. J Struct Biol. 2000 Jun;130(2-3):130–141. doi: 10.1006/jsbi.2000.4288. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES