Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Aug;81(2):785–798. doi: 10.1016/S0006-3495(01)75741-4

Dynamic regulation of sarcoplasmic reticulum Ca(2+) content and release by luminal Ca(2+)-sensitive leak in rat ventricular myocytes.

V Lukyanenko 1, S Viatchenko-Karpinski 1, A Smirnov 1, T F Wiesner 1, S Györke 1
PMCID: PMC1301553  PMID: 11463625

Abstract

In cardiac muscle, excitation-contraction (E-C) coupling is determined by the ability of the sarcoplasmic reticulum (SR) to store and release Ca(2+). It has been hypothesized that the Ca(2+) sequestration and release mechanisms might be functionally linked to optimize the E-C coupling process. To explore the relationships between the loading status of the SR and functional state of the Ca(2+) release mechanism, we examined the effects of changes in SR Ca(2+) content on spontaneous Ca(2+) sparks in saponin-permeabilized and patch-clamped rat ventricular myocytes. SR Ca(2+) content was manipulated by pharmacologically altering the capacities of either Ca(2+) uptake or leak. Ca(2+) sparks were recorded using a confocal microscope and Fluo-3 and were quantified considering missed events. SR Ca(2+) content was assessed by application of caffeine. Exposure of permeabilized cells to anti-phospholamban antibodies elevated the SR Ca(2+) content and increased the frequency of sparks. Suppression of the SR Ca(2+) pump by thapsigargin lowered [Ca(2+)](SR) and reduced the frequency of sparks. The ryanodine receptor (RyR) blockers tetracaine and Mg(2+) transiently suppressed the frequency of sparks. Upon washout of the drugs, sparking activity transiently overshot control levels. Low doses of caffeine transiently potentiated sparking activity upon application and transiently depressed the sparks upon removal. In patch-clamped cardiac myocytes, exposure to caffeine produced only a transient increase in the probability of sparks induced by depolarization. We interpret these results in terms of a novel dynamic control scheme for SR Ca(2+) cycling. A central element of this scheme is a luminal Ca(2+) sensor that links the functional activity of RyRs to the loading state of the SR, allowing cells to auto-regulate the size and functional state of their SR Ca(2+) pool. These results are important for understanding the regulation of intracellular Ca(2+) release and contractility in cardiac muscle.

Full Text

The Full Text of this article is available as a PDF (3.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balke C. W., Egan T. M., Wier W. G. Processes that remove calcium from the cytoplasm during excitation-contraction coupling in intact rat heart cells. J Physiol. 1994 Feb 1;474(3):447–462. doi: 10.1113/jphysiol.1994.sp020036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bassani J. W., Yuan W., Bers D. M. Fractional SR Ca release is regulated by trigger Ca and SR Ca content in cardiac myocytes. Am J Physiol. 1995 May;268(5 Pt 1):C1313–C1319. doi: 10.1152/ajpcell.1995.268.5.C1313. [DOI] [PubMed] [Google Scholar]
  3. Bassani R. A., Bers D. M. Na-Ca exchange is required for rest-decay but not for rest-potentiation of twitches in rabbit and rat ventricular myocytes. J Mol Cell Cardiol. 1994 Oct;26(10):1335–1347. doi: 10.1006/jmcc.1994.1152. [DOI] [PubMed] [Google Scholar]
  4. Bassani R. A., Bers D. M. Rate of diastolic Ca release from the sarcoplasmic reticulum of intact rabbit and rat ventricular myocytes. Biophys J. 1995 May;68(5):2015–2022. doi: 10.1016/S0006-3495(95)80378-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bridge J. H., Ershler P. R., Cannell M. B. Properties of Ca2+ sparks evoked by action potentials in mouse ventricular myocytes. J Physiol. 1999 Jul 15;518(Pt 2):469–478. doi: 10.1111/j.1469-7793.1999.0469p.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bridge J. H. Relationships between the sarcoplasmic reticulum and sarcolemmal calcium transport revealed by rapidly cooling rabbit ventricular muscle. J Gen Physiol. 1986 Oct;88(4):437–473. doi: 10.1085/jgp.88.4.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cheng H., Lederer M. R., Xiao R. P., Gómez A. M., Zhou Y. Y., Ziman B., Spurgeon H., Lakatta E. G., Lederer W. J. Excitation-contraction coupling in heart: new insights from Ca2+ sparks. Cell Calcium. 1996 Aug;20(2):129–140. doi: 10.1016/s0143-4160(96)90102-5. [DOI] [PubMed] [Google Scholar]
  8. Cheng H., Lederer W. J., Cannell M. B. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science. 1993 Oct 29;262(5134):740–744. doi: 10.1126/science.8235594. [DOI] [PubMed] [Google Scholar]
  9. Cheng H., Song L. S., Shirokova N., González A., Lakatta E. G., Ríos E., Stern M. D. Amplitude distribution of calcium sparks in confocal images: theory and studies with an automatic detection method. Biophys J. 1999 Feb;76(2):606–617. doi: 10.1016/S0006-3495(99)77229-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ching L. L., Williams A. J., Sitsapesan R. Evidence for Ca(2+) activation and inactivation sites on the luminal side of the cardiac ryanodine receptor complex. Circ Res. 2000 Aug 4;87(3):201–206. doi: 10.1161/01.res.87.3.201. [DOI] [PubMed] [Google Scholar]
  11. Cui Y., Galione A., Terrar D. A. Effects of photoreleased cADP-ribose on calcium transients and calcium sparks in myocytes isolated from guinea-pig and rat ventricle. Biochem J. 1999 Sep 1;342(Pt 2):269–273. [PMC free article] [PubMed] [Google Scholar]
  12. Díaz M. E., Trafford A. W., O'Neill S. C., Eisner D. A. Measurement of sarcoplasmic reticulum Ca2+ content and sarcolemmal Ca2+ fluxes in isolated rat ventricular myocytes during spontaneous Ca2+ release. J Physiol. 1997 May 15;501(Pt 1):3–16. doi: 10.1111/j.1469-7793.1997.003bo.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Eisner D. A., Choi H. S., Díaz M. E., O'Neill S. C., Trafford A. W. Integrative analysis of calcium cycling in cardiac muscle. Circ Res. 2000 Dec 8;87(12):1087–1094. doi: 10.1161/01.res.87.12.1087. [DOI] [PubMed] [Google Scholar]
  14. Eisner D. A., Trafford A. W., Díaz M. E., Overend C. L., O'Neill S. C. The control of Ca release from the cardiac sarcoplasmic reticulum: regulation versus autoregulation. Cardiovasc Res. 1998 Jun;38(3):589–604. doi: 10.1016/s0008-6363(98)00062-5. [DOI] [PubMed] [Google Scholar]
  15. Fabiato A. Simulated calcium current can both cause calcium loading in and trigger calcium release from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol. 1985 Feb;85(2):291–320. doi: 10.1085/jgp.85.2.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Fabiato A. Two kinds of calcium-induced release of calcium from the sarcoplasmic reticulum of skinned cardiac cells. Adv Exp Med Biol. 1992;311:245–262. doi: 10.1007/978-1-4615-3362-7_18. [DOI] [PubMed] [Google Scholar]
  17. Ginsburg K. S., Weber C. R., Bers D. M. Control of maximum sarcoplasmic reticulum Ca load in intact ferret ventricular myocytes. Effects Of thapsigargin and isoproterenol. J Gen Physiol. 1998 Apr;111(4):491–504. doi: 10.1085/jgp.111.4.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Györke I., Györke S. Regulation of the cardiac ryanodine receptor channel by luminal Ca2+ involves luminal Ca2+ sensing sites. Biophys J. 1998 Dec;75(6):2801–2810. doi: 10.1016/S0006-3495(98)77723-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Györke S., Lukyanenko V., Györke I. Dual effects of tetracaine on spontaneous calcium release in rat ventricular myocytes. J Physiol. 1997 Apr 15;500(Pt 2):297–309. doi: 10.1113/jphysiol.1997.sp022021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Gómez A. M., Valdivia H. H., Cheng H., Lederer M. R., Santana L. F., Cannell M. B., McCune S. A., Altschuld R. A., Lederer W. J. Defective excitation-contraction coupling in experimental cardiac hypertrophy and heart failure. Science. 1997 May 2;276(5313):800–806. doi: 10.1126/science.276.5313.800. [DOI] [PubMed] [Google Scholar]
  21. Isenberg G., Han S. Gradation of Ca(2+)-induced Ca2+ release by voltage-clamp pulse duration in potentiated guinea-pig ventricular myocytes. J Physiol. 1994 Nov 1;480(Pt 3):423–438. doi: 10.1113/jphysiol.1994.sp020372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Izu L. T., Mauban J. R., Balke C. W., Wier W. G. Large currents generate cardiac Ca2+ sparks. Biophys J. 2001 Jan;80(1):88–102. doi: 10.1016/S0006-3495(01)75997-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Izu L. T., Wier W. G., Balke C. W. Theoretical analysis of the Ca2+ spark amplitude distribution. Biophys J. 1998 Sep;75(3):1144–1162. doi: 10.1016/s0006-3495(98)74034-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lukyanenko V., Gyorke S. Ca2+ sparks and Ca2+ waves in saponin-permeabilized rat ventricular myocytes. J Physiol. 1999 Dec 15;521(Pt 3):575–585. doi: 10.1111/j.1469-7793.1999.00575.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lukyanenko V., Györke I., Györke S. Regulation of calcium release by calcium inside the sarcoplasmic reticulum in ventricular myocytes. Pflugers Arch. 1996 Oct;432(6):1047–1054. doi: 10.1007/s004240050233. [DOI] [PubMed] [Google Scholar]
  26. Lukyanenko V., Györke I., Subramanian S., Smirnov A., Wiesner T. F., Györke S. Inhibition of Ca(2+) sparks by ruthenium red in permeabilized rat ventricular myocytes. Biophys J. 2000 Sep;79(3):1273–1284. doi: 10.1016/S0006-3495(00)76381-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lukyanenko V., Subramanian S., Gyorke I., Wiesner T. F., Gyorke S. The role of luminal Ca2+ in the generation of Ca2+ waves in rat ventricular myocytes. J Physiol. 1999 Jul 1;518(Pt 1):173–186. doi: 10.1111/j.1469-7793.1999.0173r.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lukyanenko V., Wiesner T. F., Gyorke S. Termination of Ca2+ release during Ca2+ sparks in rat ventricular myocytes. J Physiol. 1998 Mar 15;507(Pt 3):667–677. doi: 10.1111/j.1469-7793.1998.667bs.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lytton J., Westlin M., Hanley M. R. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem. 1991 Sep 15;266(26):17067–17071. [PubMed] [Google Scholar]
  30. López-López J. R., Shacklock P. S., Balke C. W., Wier W. G. Local calcium transients triggered by single L-type calcium channel currents in cardiac cells. Science. 1995 May 19;268(5213):1042–1045. doi: 10.1126/science.7754383. [DOI] [PubMed] [Google Scholar]
  31. Mayer E. J., McKenna E., Garsky V. M., Burke C. J., Mach H., Middaugh C. R., Sardana M., Smith J. S., Johnson R. G., Jr Biochemical and biophysical comparison of native and chemically synthesized phospholamban and a monomeric phospholamban analog. J Biol Chem. 1996 Jan 19;271(3):1669–1677. doi: 10.1074/jbc.271.3.1669. [DOI] [PubMed] [Google Scholar]
  32. Morris G. L., Cheng H. C., Colyer J., Wang J. H. Phospholamban regulation of cardiac sarcoplasmic reticulum (Ca(2+)-Mg2+)-ATPase. Mechanism of regulation and site of monoclonal antibody interaction. J Biol Chem. 1991 Jun 15;266(17):11270–11275. [PubMed] [Google Scholar]
  33. Santana L. F., Cheng H., Gómez A. M., Cannell M. B., Lederer W. J. Relation between the sarcolemmal Ca2+ current and Ca2+ sparks and local control theories for cardiac excitation-contraction coupling. Circ Res. 1996 Jan;78(1):166–171. doi: 10.1161/01.res.78.1.166. [DOI] [PubMed] [Google Scholar]
  34. Satoh H., Blatter L. A., Bers D. M. Effects of [Ca2+]i, SR Ca2+ load, and rest on Ca2+ spark frequency in ventricular myocytes. Am J Physiol. 1997 Feb;272(2 Pt 2):H657–H668. doi: 10.1152/ajpheart.1997.272.2.H657. [DOI] [PubMed] [Google Scholar]
  35. Sham J. S., Jones L. R., Morad M. Phospholamban mediates the beta-adrenergic-enhanced Ca2+ uptake in mammalian ventricular myocytes. Am J Physiol. 1991 Oct;261(4 Pt 2):H1344–H1349. doi: 10.1152/ajpheart.1991.261.4.H1344. [DOI] [PubMed] [Google Scholar]
  36. Shannon T. R., Ginsburg K. S., Bers D. M. Reverse mode of the sarcoplasmic reticulum calcium pump and load-dependent cytosolic calcium decline in voltage-clamped cardiac ventricular myocytes. Biophys J. 2000 Jan;78(1):322–333. doi: 10.1016/S0006-3495(00)76595-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Shorofsky S. R., Izu L., Wier W. G., Balke C. W. Ca2+ sparks triggered by patch depolarization in rat heart cells. Circ Res. 1998 Mar 9;82(4):424–429. doi: 10.1161/01.res.82.4.424. [DOI] [PubMed] [Google Scholar]
  38. Sitsapesan R., Williams A. J. Regulation of the gating of the sheep cardiac sarcoplasmic reticulum Ca(2+)-release channel by luminal Ca2+. J Membr Biol. 1994 Feb;137(3):215–226. doi: 10.1007/BF00232590. [DOI] [PubMed] [Google Scholar]
  39. Snyder S. M., Palmer B. M., Moore R. L. A mathematical model of cardiocyte Ca(2+) dynamics with a novel representation of sarcoplasmic reticular Ca(2+) control. Biophys J. 2000 Jul;79(1):94–115. doi: 10.1016/S0006-3495(00)76276-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Song L. S., Stern M. D., Lakatta E. G., Cheng H. Partial depletion of sarcoplasmic reticulum calcium does not prevent calcium sparks in rat ventricular myocytes. J Physiol. 1997 Dec 15;505(Pt 3):665–675. doi: 10.1111/j.1469-7793.1997.665ba.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Spencer C. I., Berlin J. R. Control of sarcoplasmic reticulum calcium release during calcium loading in isolated rat ventricular myocytes. J Physiol. 1995 Oct 15;488(Pt 2):267–279. doi: 10.1113/jphysiol.1995.sp020965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Stern M. D. Theory of excitation-contraction coupling in cardiac muscle. Biophys J. 1992 Aug;63(2):497–517. doi: 10.1016/S0006-3495(92)81615-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wier W. G., Balke C. W. Ca(2+) release mechanisms, Ca(2+) sparks, and local control of excitation-contraction coupling in normal heart muscle. Circ Res. 1999 Oct 29;85(9):770–776. doi: 10.1161/01.res.85.9.770. [DOI] [PubMed] [Google Scholar]
  44. Wier W. G., ter Keurs H. E., Marban E., Gao W. D., Balke C. W. Ca2+ 'sparks' and waves in intact ventricular muscle resolved by confocal imaging. Circ Res. 1997 Oct;81(4):462–469. doi: 10.1161/01.res.81.4.462. [DOI] [PubMed] [Google Scholar]
  45. Xu L., Meissner G. Regulation of cardiac muscle Ca2+ release channel by sarcoplasmic reticulum lumenal Ca2+. Biophys J. 1998 Nov;75(5):2302–2312. doi: 10.1016/S0006-3495(98)77674-X. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES