Abstract
Transepithelial electrical impedance analysis provides a sensitive method to evaluate the conductances and capacitances of apical and basolateral plasma membranes of epithelial cells. Impedance analysis is complicated, due not only to the anatomical arrangement of the cells and their paracellular shunt pathways, but also in particular to the existence of audio frequency-dependent capacitances or dispersions. In this paper we explore implications and consequences of anatomically related Maxwell-Wagner and Cole-Cole dielectric dispersions that impose limitations, approximations, and pitfalls of impedance analysis when tissues are studied under widely ranging spontaneous rates of transport, and in particular when apical membrane sodium and chloride channels are activated by adenosine 3',5'-cyclic monophosphate (cAMP) in A6 epithelia. We develop the thesis that capacitive relaxation processes of any origin lead not only to dependence on frequency of the impedance locus, but also to the appearance of depressed semicircles in Nyquist transepithelial impedance plots, regardless of the tightness or leakiness of the paracellular shunt pathways. Frequency dependence of capacitance precludes analysis of data in traditional ways, where capacitance is assumed constant, and is especially important when apical and/or basolateral membranes exhibit one or more dielectric dispersions.
Full Text
The Full Text of this article is available as a PDF (212.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Awayda M. S., Van Driessche W., Helman S. I. Frequency-dependent capacitance of the apical membrane of frog skin: dielectric relaxation processes. Biophys J. 1999 Jan;76(1 Pt 1):219–232. doi: 10.1016/S0006-3495(99)77191-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baxendale-Cox L. M., Duncan R. L., Liu X., Baldwin K., Els W. J., Helman S. I. Steroid hormone-dependent expression of blocker-sensitive ENaCs in apical membranes of A6 epithelia. Am J Physiol. 1997 Nov;273(5 Pt 1):C1650–C1656. doi: 10.1152/ajpcell.1997.273.5.C1650. [DOI] [PubMed] [Google Scholar]
- Blazer-Yost B. L., Păunescu T. G., Helman S. I., Lee K. D., Vlahos C. J. Phosphoinositide 3-kinase is required for aldosterone-regulated sodium reabsorption. Am J Physiol. 1999 Sep;277(3 Pt 1):C531–C536. doi: 10.1152/ajpcell.1999.277.3.C531. [DOI] [PubMed] [Google Scholar]
- Chalfant M. L., Coupaye-Gerard B., Kleyman T. R. Distinct regulation of Na+ reabsorption and Cl- secretion by arginine vasopressin in the amphibian cell line A6. Am J Physiol. 1993 Jun;264(6 Pt 1):C1480–C1488. doi: 10.1152/ajpcell.1993.264.6.C1480. [DOI] [PubMed] [Google Scholar]
- Helman S. I., Liu X., Baldwin K., Blazer-Yost B. L., Els W. J. Time-dependent stimulation by aldosterone of blocker-sensitive ENaCs in A6 epithelia. Am J Physiol. 1998 Apr;274(4 Pt 1):C947–C957. doi: 10.1152/ajpcell.1998.274.4.C947. [DOI] [PubMed] [Google Scholar]
- Helman S. I., Liu X. Substrate-dependent expression of Na+ transport and shunt conductance in A6 epithelia. Am J Physiol. 1997 Aug;273(2 Pt 1):C434–C441. doi: 10.1152/ajpcell.1997.273.2.C434. [DOI] [PubMed] [Google Scholar]
- Helman S. I., Thompson S. M. Interpretation and use of electrical equivalent circuits in studies of epithelial tissues. Am J Physiol. 1982 Dec;243(6):F519–F531. doi: 10.1152/ajprenal.1982.243.6.F519. [DOI] [PubMed] [Google Scholar]
- Kell D. B., Harris C. M. On the dielectrically observable consequences of the diffusional motions of lipids and proteins in membranes. 1. Theory and overview. Eur Biophys J. 1985;12(4):181–197. doi: 10.1007/BF00253845. [DOI] [PubMed] [Google Scholar]
- Kokko K. E., Matsumoto P. S., Zhang Z. R., Ling B. N., Eaton D. C. Prostaglandin E2 increases 7-pS Cl- channel density in the apical membrane of A6 distal nephron cells. Am J Physiol. 1997 Aug;273(2 Pt 1):C548–C557. doi: 10.1152/ajpcell.1997.273.2.C548. [DOI] [PubMed] [Google Scholar]
- Marunaka Y., Eaton D. C. Chloride channels in the apical membrane of a distal nephron A6 cell line. Am J Physiol. 1990 Feb;258(2 Pt 1):C352–C368. doi: 10.1152/ajpcell.1990.258.2.C352. [DOI] [PubMed] [Google Scholar]
- Matsumoto P. S., Mo L., Wills N. K. Osmotic regulation of Na+ transport across A6 epithelium: interactions with prostaglandin E2 and cyclic AMP. J Membr Biol. 1997 Nov 1;160(1):27–38. doi: 10.1007/s002329900292. [DOI] [PubMed] [Google Scholar]
- Nakahari T., Marunaka Y. ADH-evoked [Cl-]i-dependent transient in whole cell current of distal nephron cell line A6. Am J Physiol. 1995 Jan;268(1 Pt 2):F64–F72. doi: 10.1152/ajprenal.1995.268.1.F64. [DOI] [PubMed] [Google Scholar]
- Păunescu T. G., Blazer-Yost B. L., Vlahos C. J., Helman S. I. LY-294002-inhibitable PI 3-kinase and regulation of baseline rates of Na(+) transport in A6 epithelia. Am J Physiol Cell Physiol. 2000 Jul;279(1):C236–C247. doi: 10.1152/ajpcell.2000.279.1.C236. [DOI] [PubMed] [Google Scholar]
- Păunescu T. G., Helman S. I. PGE(2) activation of apical membrane Cl(-) channels in A6 epithelia: impedance analysis. Biophys J. 2001 Aug;81(2):852–866. doi: 10.1016/S0006-3495(01)75746-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHWAN H. P. Electrical properties of tissue and cell suspensions. Adv Biol Med Phys. 1957;5:147–209. doi: 10.1016/b978-1-4832-3111-2.50008-0. [DOI] [PubMed] [Google Scholar]
- Schifferdecker E., Frömter E. The AC impedance of Necturus gallbladder epithelium. Pflugers Arch. 1978 Nov 14;377(2):125–133. doi: 10.1007/BF00582842. [DOI] [PubMed] [Google Scholar]
- Van Driessche W. Lidocaine blockage of basolateral potassium channels in the amphibian urinary bladder. J Physiol. 1986 Dec;381:575–593. doi: 10.1113/jphysiol.1986.sp016344. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yanase M., Handler J. S. Adenosine 3',5'-cyclic monophosphate stimulates chloride secretion in A6 epithelia. Am J Physiol. 1986 Nov;251(5 Pt 1):C810–C814. doi: 10.1152/ajpcell.1986.251.5.C810. [DOI] [PubMed] [Google Scholar]
