Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Aug;81(2):852–866. doi: 10.1016/S0006-3495(01)75746-3

PGE(2) activation of apical membrane Cl(-) channels in A6 epithelia: impedance analysis.

T G Păunescu 1, S I Helman 1
PMCID: PMC1301558  PMID: 11463630

Abstract

Measurements of transepithelial electrical impedance of continuously short-circuited A6 epithelia were made at audio frequencies (0.244 Hz to 10.45 kHz) to investigate the time course and extent to which prostaglandin E(2) (PGE(2)) modulates Cl(-) transport and apical membrane capacitance in this cell-cultured model epithelium. Apical and basolateral membrane resistances were determined by nonlinear curve-fitting of the impedance vectors at relatively low frequencies (<50 Hz) to equations (Păunescu, T. G., and S. I. Helman. 2001. Biophys. J. 81:838--851) where depressed Nyquist impedance semicircles were characteristic of the membrane impedances under control Na(+)-transporting and amiloride-inhibited conditions. In all tissues (control, amiloride-blocked, and amiloride-blocked and furosemide-pretreated), PGE(2) caused relatively small (< approximately 3 microA/cm(2)) and rapid (<60 s) maximal increase of chloride current due to activation of a rather large increase of apical membrane conductance that preceded significant activation of Na(+) transport through amiloride-sensitive epithelial Na(+) channels (ENaCs). Apical membrane capacitance was frequency-dependent with a Cole-Cole dielectric dispersion whose relaxation frequency was near 150 Hz. Analysis of the time-dependent changes of the complex frequency-dependent equivalent capacitance of the cells at frequencies >1.5 kHz revealed that the mean 9.8% increase of capacitance caused by PGE(2) was not correlated in time with activation of chloride conductance, but rather correlated with activation of apical membrane Na(+) transport.

Full Text

The Full Text of this article is available as a PDF (196.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramcheck F. J., Van Driessche W., Helman S. I. Autoregulation of apical membrane Na+ permeability of tight epithelia. Noise analysis with amiloride and CGS 4270. J Gen Physiol. 1985 Apr;85(4):555–582. doi: 10.1085/jgp.85.4.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Atia F., Zeiske W., van Driessche W. Secretory apical Cl- channels in A6 cells: possible control by cell Ca2+ and cAMP. Pflugers Arch. 1999 Aug;438(3):344–353. doi: 10.1007/s004240050919. [DOI] [PubMed] [Google Scholar]
  3. Awayda M. S., Van Driessche W., Helman S. I. Frequency-dependent capacitance of the apical membrane of frog skin: dielectric relaxation processes. Biophys J. 1999 Jan;76(1 Pt 1):219–232. doi: 10.1016/S0006-3495(99)77191-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baxendale-Cox L. M., Duncan R. L., Liu X., Baldwin K., Els W. J., Helman S. I. Steroid hormone-dependent expression of blocker-sensitive ENaCs in apical membranes of A6 epithelia. Am J Physiol. 1997 Nov;273(5 Pt 1):C1650–C1656. doi: 10.1152/ajpcell.1997.273.5.C1650. [DOI] [PubMed] [Google Scholar]
  5. Brazy P. C., Gunn R. B. Furosemide inhibition of chloride transport in human red blood cells. J Gen Physiol. 1976 Dec;68(6):583–599. doi: 10.1085/jgp.68.6.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Butterworth M. B., Helman S. I., Els W. J. cAMP-sensitive endocytic trafficking in A6 epithelia. Am J Physiol Cell Physiol. 2001 Apr;280(4):C752–C762. doi: 10.1152/ajpcell.2001.280.4.C752. [DOI] [PubMed] [Google Scholar]
  7. Chalfant M. L., Coupaye-Gerard B., Kleyman T. R. Distinct regulation of Na+ reabsorption and Cl- secretion by arginine vasopressin in the amphibian cell line A6. Am J Physiol. 1993 Jun;264(6 Pt 1):C1480–C1488. doi: 10.1152/ajpcell.1993.264.6.C1480. [DOI] [PubMed] [Google Scholar]
  8. Els W. J., Helman S. I. Dual role of prostaglandins (PGE2) in regulation of channel density and open probability of epithelial Na+ channels in frog skin (R. pipiens). J Membr Biol. 1997 Jan 1;155(1):75–87. doi: 10.1007/s002329900159. [DOI] [PubMed] [Google Scholar]
  9. Els W. J., Helman S. I. Vasopressin, theophylline, PGE2, and indomethacin on active Na transport in frog skin: studies with microelectrodes. Am J Physiol. 1981 Sep;241(3):F279–F288. doi: 10.1152/ajprenal.1981.241.3.F279. [DOI] [PubMed] [Google Scholar]
  10. Fan P. Y., Haas M., Middleton J. P. Identification of a regulated Na/K/Cl cotransport system in a distal nephron cell line. Biochim Biophys Acta. 1992 Oct 19;1111(1):75–80. doi: 10.1016/0005-2736(92)90276-r. [DOI] [PubMed] [Google Scholar]
  11. Hall W. J., O'Donoghue J. P., O'Regan M. G., Penny W. J. Endogenous prostaglandins, adenosine 3':5'-monophosphate and sodium transport across isolated frog skin. J Physiol. 1976 Jul;258(3):731–753. doi: 10.1113/jphysiol.1976.sp011443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Helman S. I., Baxendale L. M. Blocker-related changes of channel density. Analysis of a three-state model for apical Na channels of frog skin. J Gen Physiol. 1990 Apr;95(4):647–678. doi: 10.1085/jgp.95.4.647. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Helman S. I., Liu X., Baldwin K., Blazer-Yost B. L., Els W. J. Time-dependent stimulation by aldosterone of blocker-sensitive ENaCs in A6 epithelia. Am J Physiol. 1998 Apr;274(4 Pt 1):C947–C957. doi: 10.1152/ajpcell.1998.274.4.C947. [DOI] [PubMed] [Google Scholar]
  14. Helman S. I., Liu X. Substrate-dependent expression of Na+ transport and shunt conductance in A6 epithelia. Am J Physiol. 1997 Aug;273(2 Pt 1):C434–C441. doi: 10.1152/ajpcell.1997.273.2.C434. [DOI] [PubMed] [Google Scholar]
  15. Helman S. I., Thompson S. M. Interpretation and use of electrical equivalent circuits in studies of epithelial tissues. Am J Physiol. 1982 Dec;243(6):F519–F531. doi: 10.1152/ajprenal.1982.243.6.F519. [DOI] [PubMed] [Google Scholar]
  16. Keeler R., Wong N. L. Evidence that prostaglandin E2 stimulates chloride secretion in cultured A6 renal epithelial cells. Am J Physiol. 1986 Mar;250(3 Pt 2):F511–F515. doi: 10.1152/ajprenal.1986.250.3.F511. [DOI] [PubMed] [Google Scholar]
  17. Koeppen B. M., Beyenbach K. W., Dantzler W. H., Helman S. I. Electrical characteristics of snake distal tubules: studies of I-V relationships. Am J Physiol. 1980 Nov;239(5):F402–F411. doi: 10.1152/ajprenal.1980.239.5.F402. [DOI] [PubMed] [Google Scholar]
  18. Kokko K. E., Matsumoto P. S., Ling B. N., Eaton D. C. Effects of prostaglandin E2 on amiloride-blockable Na+ channels in a distal nephron cell line (A6). Am J Physiol. 1994 Nov;267(5 Pt 1):C1414–C1425. doi: 10.1152/ajpcell.1994.267.5.C1414. [DOI] [PubMed] [Google Scholar]
  19. Kokko K. E., Matsumoto P. S., Zhang Z. R., Ling B. N., Eaton D. C. Prostaglandin E2 increases 7-pS Cl- channel density in the apical membrane of A6 distal nephron cells. Am J Physiol. 1997 Aug;273(2 Pt 1):C548–C557. doi: 10.1152/ajpcell.1997.273.2.C548. [DOI] [PubMed] [Google Scholar]
  20. Lambert A., Lowe A. G. Chloride-bicarbonate exchange in human red cells measured using a stopped flow apparatus. J Physiol. 1980 Sep;306:431–443. doi: 10.1113/jphysiol.1980.sp013405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Macchia D. D., Helman S. I. Transepithelial current-voltage relationships of toad urinary bladder and colon. Estimates of ENaA and shunt resistance. Biophys J. 1979 Sep;27(3):371–392. doi: 10.1016/S0006-3495(79)85224-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Marunaka Y., Eaton D. C. Effects of vasopressin and cAMP on single amiloride-blockable Na channels. Am J Physiol. 1991 May;260(5 Pt 1):C1071–C1084. doi: 10.1152/ajpcell.1991.260.5.C1071. [DOI] [PubMed] [Google Scholar]
  23. Matsumoto P. S., Mo L., Wills N. K. Osmotic regulation of Na+ transport across A6 epithelium: interactions with prostaglandin E2 and cyclic AMP. J Membr Biol. 1997 Nov 1;160(1):27–38. doi: 10.1007/s002329900292. [DOI] [PubMed] [Google Scholar]
  24. Niisato N., Marunaka Y. Regulation of Cl- transport by IBMX in renal A6 epithelium. Pflugers Arch. 1997 Jul;434(3):227–233. doi: 10.1007/s004240050389. [DOI] [PubMed] [Google Scholar]
  25. Noland T. D., Carter C. E., Jacobson H. R., Breyer M. D. PGE2 regulates cAMP production in cultured rabbit CCD cells: evidence for dual inhibitory mechanisms. Am J Physiol. 1992 Dec;263(6 Pt 1):C1208–C1215. doi: 10.1152/ajpcell.1992.263.6.C1208. [DOI] [PubMed] [Google Scholar]
  26. Perkins F. M., Handler J. S. Transport properties of toad kidney epithelia in culture. Am J Physiol. 1981 Sep;241(3):C154–C159. doi: 10.1152/ajpcell.1981.241.3.C154. [DOI] [PubMed] [Google Scholar]
  27. Păunescu T. G., Blazer-Yost B. L., Vlahos C. J., Helman S. I. LY-294002-inhibitable PI 3-kinase and regulation of baseline rates of Na(+) transport in A6 epithelia. Am J Physiol Cell Physiol. 2000 Jul;279(1):C236–C247. doi: 10.1152/ajpcell.2000.279.1.C236. [DOI] [PubMed] [Google Scholar]
  28. Păunescu T. G., Helman S. I. cAmp activation of apical membrane Cl(-) channels: theoretical considerations for impedance analysis. Biophys J. 2001 Aug;81(2):838–851. doi: 10.1016/S0006-3495(01)75745-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schlondorff D., Satriano J. A. Interactions of vasopressin, cAMP, and prostaglandins in toad urinary bladder. Am J Physiol. 1985 Mar;248(3 Pt 2):F454–F458. doi: 10.1152/ajprenal.1985.248.3.F454. [DOI] [PubMed] [Google Scholar]
  30. Sonnenburg W. K., Smith W. L. Regulation of cyclic AMP metabolism in rabbit cortical collecting tubule cells by prostaglandins. J Biol Chem. 1988 May 5;263(13):6155–6160. [PubMed] [Google Scholar]
  31. Stoddard J. S., Jakobsson E., Helman S. I. Basolateral membrane chloride transport in isolated epithelia of frog skin. Am J Physiol. 1985 Sep;249(3 Pt 1):C318–C329. doi: 10.1152/ajpcell.1985.249.3.C318. [DOI] [PubMed] [Google Scholar]
  32. Yanase M., Handler J. S. Adenosine 3',5'-cyclic monophosphate stimulates chloride secretion in A6 epithelia. Am J Physiol. 1986 Nov;251(5 Pt 1):C810–C814. doi: 10.1152/ajpcell.1986.251.5.C810. [DOI] [PubMed] [Google Scholar]
  33. Zeiske W., Atia F., Van Driessche W. Apical Cl- channels in A6 cells. J Membr Biol. 1998 Dec 1;166(3):169–178. doi: 10.1007/s002329900458. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES