Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Aug;81(2):895–904. doi: 10.1016/S0006-3495(01)75749-9

A model for 4-aminopyridine action on K channels: similarities to tetraethylammonium ion action.

C M Armstrong 1, A Loboda 1
PMCID: PMC1301561  PMID: 11463633

Abstract

We present a model for the action of 4-aminopyridine (4AP) on K channels. The model is closely based on the gating current studies of the preceding paper and has been extended to account for ionic current data in the literature. We propose that 4AP, like tetraethylammonium ion and other quaternary ammonium ions, enters and leaves the channel only when the activation gate is open, a proposal that is strongly supported by the literature. Once in the open channel, 4AP's major action is to bias the activation gate toward the closed conformation by approximately the energy of a hydrogen bond. S4 segment movement, as reflected in gating currents, is almost normal for a 4AP-occupied channel; only the final opening transition is affected. The model is qualitatively the same as the one used for many years to explain the action of quaternary ammonium ions.

Full Text

The Full Text of this article is available as a PDF (119.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong C. M. Interaction of tetraethylammonium ion derivatives with the potassium channels of giant axons. J Gen Physiol. 1971 Oct;58(4):413–437. doi: 10.1085/jgp.58.4.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bever C. T., Jr, Anderson P. A., Leslie J., Panitch H. S., Dhib-Jalbut S., Khan O. A., Milo R., Hebel J. R., Conway K. L., Katz E. Treatment with oral 3,4 diaminopyridine improves leg strength in multiple sclerosis patients: results of a randomized, double-blind, placebo-controlled, crossover trial. Neurology. 1996 Dec;47(6):1457–1462. doi: 10.1212/wnl.47.6.1457. [DOI] [PubMed] [Google Scholar]
  3. Bezanilla F., Armstrong C. M. Negative conductance caused by entry of sodium and cesium ions into the potassium channels of squid axons. J Gen Physiol. 1972 Nov;60(5):588–608. doi: 10.1085/jgp.60.5.588. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Demo S. D., Yellen G. The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker. Neuron. 1991 Nov;7(5):743–753. doi: 10.1016/0896-6273(91)90277-7. [DOI] [PubMed] [Google Scholar]
  5. Doyle D. A., Morais Cabral J., Pfuetzner R. A., Kuo A., Gulbis J. M., Cohen S. L., Chait B. T., MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998 Apr 3;280(5360):69–77. doi: 10.1126/science.280.5360.69. [DOI] [PubMed] [Google Scholar]
  6. Fujihara K., Miyoshi T. The effects of 4-aminopyridine on motor evoked potentials in multiple sclerosis. J Neurol Sci. 1998 Jul 15;159(1):102–106. doi: 10.1016/s0022-510x(98)00143-9. [DOI] [PubMed] [Google Scholar]
  7. Holmgren M., Smith P. L., Yellen G. Trapping of organic blockers by closing of voltage-dependent K+ channels: evidence for a trap door mechanism of activation gating. J Gen Physiol. 1997 May;109(5):527–535. doi: 10.1085/jgp.109.5.527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kirsch G. E., Drewe J. A. Gating-dependent mechanism of 4-aminopyridine block in two related potassium channels. J Gen Physiol. 1993 Nov;102(5):797–816. doi: 10.1085/jgp.102.5.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kirsch G. E., Narahashi T. Site of action and active form of aminopyridines in squid axon membranes. J Pharmacol Exp Ther. 1983 Jul;226(1):174–179. [PubMed] [Google Scholar]
  10. Kirsch G. E., Shieh C. C., Drewe J. A., Vener D. F., Brown A. M. Segmental exchanges define 4-aminopyridine binding and the inner mouth of K+ pores. Neuron. 1993 Sep;11(3):503–512. doi: 10.1016/0896-6273(93)90154-j. [DOI] [PubMed] [Google Scholar]
  11. Kirsch G. E., Yeh J. Z., Oxford G. S. Modulation of aminopyridine block of potassium currents in squid axon. Biophys J. 1986 Oct;50(4):637–644. doi: 10.1016/S0006-3495(86)83503-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Loboda A., Armstrong C. M. Resolving the gating charge movement associated with late transitions in K channel activation. Biophys J. 2001 Aug;81(2):905–916. doi: 10.1016/S0006-3495(01)75750-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. McCormack K., Joiner W. J., Heinemann S. H. A characterization of the activating structural rearrangements in voltage-dependent Shaker K+ channels. Neuron. 1994 Feb;12(2):301–315. doi: 10.1016/0896-6273(94)90273-9. [DOI] [PubMed] [Google Scholar]
  14. Melishchuk A., Armstrong C. M. Mechanism underlying slow kinetics of the OFF gating current in Shaker potassium channel. Biophys J. 2001 May;80(5):2167–2175. doi: 10.1016/S0006-3495(01)76189-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smith K. J., Felts P. A., John G. R. Effects of 4-aminopyridine on demyelinated axons, synapses and muscle tension. Brain. 2000 Jan;123(Pt 1):171–184. doi: 10.1093/brain/123.1.171. [DOI] [PubMed] [Google Scholar]
  16. del Camino D., Holmgren M., Liu Y., Yellen G. Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature. 2000 Jan 20;403(6767):321–325. doi: 10.1038/35002099. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES