Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Aug;81(2):937–948. doi: 10.1016/S0006-3495(01)75752-9

Robust, high-resolution, whole cell patch-clamp capacitance measurements using square wave stimulation.

R E Thompson 1, M Lindau 1, W W Webb 1
PMCID: PMC1301564  PMID: 11463636

Abstract

High-resolution, whole cell capacitance measurements are usually performed using sine wave stimulation using a single frequency or a sum of two frequencies. We present here a high-resolution technique for whole-cell capacitance measurements based on square-wave stimulation. The square wave represents a sum of sinusoidal frequencies at odd harmonics of the base frequency, the amplitude of which is highest for the base frequency and decreases as the frequency increases. The resulting currents can be analyzed by fitting the current relaxations with exponentials, or by a phase-sensitive detector technique. This method provides a resolution undistinguishable from that of single-frequency sine wave stimulation, and allows for clear separation of changes in capacitance, membrane conductance, and access resistance. In addition, it allows for the analysis of more complex equivalent circuits as associated with the presence of narrow fusion pores during degranulation, tracking many equivalent circuit parameters simultaneously. The method is insensitive to changes in the reversal potential, pipette capacitance, or widely varying cell circuit parameters. It thus provides important advantages in terms of robustness for measuring cell capacitances, and allows analysis of complicated changes of the equivalent circuits.

Full Text

The Full Text of this article is available as a PDF (181.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albillos A., Dernick G., Horstmann H., Almers W., Alvarez de Toledo G., Lindau M. The exocytotic event in chromaffin cells revealed by patch amperometry. Nature. 1997 Oct 2;389(6650):509–512. doi: 10.1038/39081. [DOI] [PubMed] [Google Scholar]
  2. Barnett D. W., Misler S. An optimized approach to membrane capacitance estimation using dual-frequency excitation. Biophys J. 1997 Apr;72(4):1641–1658. doi: 10.1016/S0006-3495(97)78810-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Breckenridge L. J., Almers W. Final steps in exocytosis observed in a cell with giant secretory granules. Proc Natl Acad Sci U S A. 1987 Apr;84(7):1945–1949. doi: 10.1073/pnas.84.7.1945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen P., Gillis K. D. The noise of membrane capacitance measurements in the whole-cell recording configuration. Biophys J. 2000 Oct;79(4):2162–2170. doi: 10.1016/S0006-3495(00)76464-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clausen C., Fernandez J. M. A low-cost method for rapid transfer function measurements with direct application to biological impedance analysis. Pflugers Arch. 1981 Jun;390(3):290–295. doi: 10.1007/BF00658279. [DOI] [PubMed] [Google Scholar]
  6. De Matteis M. A., Di Tullio G., Buccione R., Luini A. Characterization of calcium-triggered secretion in permeabilized rat basophilic leukemia cells. Possible role of vectorially acting G proteins. J Biol Chem. 1991 Jun 5;266(16):10452–10460. [PubMed] [Google Scholar]
  7. Debus K., Hartmann J., Kilic G., Lindau M. Influence of conductance changes on patch clamp capacitance measurements using a lock-in amplifier and limitations of the phase tracking technique. Biophys J. 1995 Dec;69(6):2808–2822. doi: 10.1016/S0006-3495(95)80154-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Donnelly D. F. A novel method for rapid measurement of membrane resistance, capacitance, and access resistance. Biophys J. 1994 Mar;66(3 Pt 1):873–877. doi: 10.1016/s0006-3495(94)80863-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fernandez J. M., Neher E., Gomperts B. D. Capacitance measurements reveal stepwise fusion events in degranulating mast cells. 1984 Nov 29-Dec 5Nature. 312(5993):453–455. doi: 10.1038/312453a0. [DOI] [PubMed] [Google Scholar]
  10. Fernández J. M., Bezanilla F., Taylor R. E. Distribution and kinetics of membrane dielectric polarization. II. Frequency domain studies of gating currents. J Gen Physiol. 1982 Jan;79(1):41–67. doi: 10.1085/jgp.79.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fidler N., Fernandez J. M. Phase tracking: an improved phase detection technique for cell membrane capacitance measurements. Biophys J. 1989 Dec;56(6):1153–1162. doi: 10.1016/S0006-3495(89)82762-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fishman H. M. Relaxations, fluctuations and ion transfer across membranes. Prog Biophys Mol Biol. 1985;46(2):127–162. doi: 10.1016/0079-6107(85)90007-0. [DOI] [PubMed] [Google Scholar]
  13. Gillis K. D. Admittance-based measurement of membrane capacitance using the EPC-9 patch-clamp amplifier. Pflugers Arch. 2000 Mar;439(5):655–664. doi: 10.1007/s004249900173. [DOI] [PubMed] [Google Scholar]
  14. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  15. Joshi C., Fernandez J. M. Capacitance measurements. An analysis of the phase detector technique used to study exocytosis and endocytosis. Biophys J. 1988 Jun;53(6):885–892. doi: 10.1016/S0006-3495(88)83169-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Levis R. A., Rae J. L. Low-noise patch-clamp techniques. Methods Enzymol. 1998;293:218–266. doi: 10.1016/s0076-6879(98)93017-8. [DOI] [PubMed] [Google Scholar]
  17. Lindau M., Neher E. Patch-clamp techniques for time-resolved capacitance measurements in single cells. Pflugers Arch. 1988 Feb;411(2):137–146. doi: 10.1007/BF00582306. [DOI] [PubMed] [Google Scholar]
  18. Lindau M. Time-resolved capacitance measurements: monitoring exocytosis in single cells. Q Rev Biophys. 1991 Feb;24(1):75–101. doi: 10.1017/s0033583500003279. [DOI] [PubMed] [Google Scholar]
  19. Maiti S., Shear J. B., Williams R. M., Zipfel W. R., Webb W. W. Measuring serotonin distribution in live cells with three-photon excitation. Science. 1997 Jan 24;275(5299):530–532. doi: 10.1126/science.275.5299.530. [DOI] [PubMed] [Google Scholar]
  20. Neher E., Marty A. Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6712–6716. doi: 10.1073/pnas.79.21.6712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rohlicek V., Schmid A. Dual-frequency method for synchronous measurement of cell capacitance, membrane conductance and access resistance on single cells. Pflugers Arch. 1994 Aug;428(1):30–38. doi: 10.1007/BF00374749. [DOI] [PubMed] [Google Scholar]
  22. Scepek S., Lindau M. Focal exocytosis by eosinophils--compound exocytosis and cumulative fusion. EMBO J. 1993 May;12(5):1811–1817. doi: 10.1002/j.1460-2075.1993.tb05829.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sigworth F. J., Affolter H., Neher E. Design of the EPC-9, a computer-controlled patch-clamp amplifier. 2. Software. J Neurosci Methods. 1995 Feb;56(2):203–215. doi: 10.1016/0165-0270(94)00129-5. [DOI] [PubMed] [Google Scholar]
  24. Smith C. B., Betz W. J. Simultaneous independent measurement of endocytosis and exocytosis. Nature. 1996 Apr 11;380(6574):531–534. doi: 10.1038/380531a0. [DOI] [PubMed] [Google Scholar]
  25. Spruce A. E., Breckenridge L. J., Lee A. K., Almers W. Properties of the fusion pore that forms during exocytosis of a mast cell secretory vesicle. Neuron. 1990 May;4(5):643–654. doi: 10.1016/0896-6273(90)90192-i. [DOI] [PubMed] [Google Scholar]
  26. Williams R. M., Shear J. B., Zipfel W. R., Maiti S., Webb W. W. Mucosal mast cell secretion processes imaged using three-photon microscopy of 5-hydroxytryptamine autofluorescence. Biophys J. 1999 Apr;76(4):1835–1846. doi: 10.1016/S0006-3495(99)77343-1. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES