Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Aug;81(2):949–959. doi: 10.1016/S0006-3495(01)75753-0

Osmotically induced membrane tension modulates membrane permeabilization by class L amphipathic helical peptides: nucleation model of defect formation.

I V Polozov 1, G M Anantharamaiah 1, J P Segrest 1, R M Epand 1
PMCID: PMC1301565  PMID: 11463637

Abstract

The mechanism of action of lytic peptides on membranes is widely studied and is important in view of potential medical applications. Previously (I. V. Polozov, A. I. Polozova, E. M. Tytler, G. M. Anantharamaiah, J. P. Segrest, G. A. Woolley, and R. M., Biochemistry, 36:9237--9245) we analyzed the mechanism of membrane permeabilization by 18L, the archetype lytic peptide featuring the class L amphipathic alpha-helix, according to the classification of Segrest et al. (J. P. Segrest, G. de Loof, J. G. Dohlman, C. G. Brouillette, and G. M. Anantharamaiah, 1990, Proteins, 8:103--117). We concluded that the 18L peptide destabilizes membranes, leading to a transient formation of large defects that result in contents leakage and, in the presence of bilayer-bilayer contact, could lead to vesicle fusion. Here we report that this defect formation is strongly enhanced by the membrane tension induced by osmotic swelling of vesicles. Even below standard leakage-inducing peptide/lipid ratios, membrane resistance to osmotic tension drops from hundreds to tens of milliosmoles. The actual decrease is dependent on the peptide/lipid ratio and on the type of lipid. We propose that under membrane tension a peptidic pore serves as a nucleation site for the transient formation of a lipidic pore. The tension is released upon pore expansion with inclusion of more peptides and lipids into the pore lining. This tension modulation of leakage was observed for other class L peptides (mastoparan, K18L) and thus may be of general applicability for the action of membrane active lytic peptides.

Full Text

The Full Text of this article is available as a PDF (118.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anantharamaiah G. M. Synthetic peptide analogs of apolipoproteins. Methods Enzymol. 1986;128:627–647. doi: 10.1016/0076-6879(86)28096-9. [DOI] [PubMed] [Google Scholar]
  2. Argiolas A., Pisano J. J. Bombolitins, a new class of mast cell degranulating peptides from the venom of the bumblebee Megabombus pennsylvanicus. J Biol Chem. 1985 Feb 10;260(3):1437–1444. [PubMed] [Google Scholar]
  3. Benachir T., Lafleur M. Osmotic and pH transmembrane gradients control the lytic power of melittin. Biophys J. 1996 Feb;70(2):831–840. doi: 10.1016/S0006-3495(96)79622-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chapman C. J., Erdahl W. E., Taylor R. W., Pfeiffer D. R. Effects of solute concentration on the entrapment of solutes in phospholipid vesicles prepared by freeze-thaw extrusion. Chem Phys Lipids. 1991 Dec;60(2):201–208. doi: 10.1016/0009-3084(91)90042-a. [DOI] [PubMed] [Google Scholar]
  5. Chen Z., Rand R. P. The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys J. 1997 Jul;73(1):267–276. doi: 10.1016/S0006-3495(97)78067-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Clerc S. G., Thompson T. E. A possible mechanism for vesicle formation by extrusion. Biophys J. 1994 Jul;67(1):475–476. doi: 10.1016/S0006-3495(94)80503-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cruciani R. A., Barker J. L., Durell S. R., Raghunathan G., Guy H. R., Zasloff M., Stanley E. F. Magainin 2, a natural antibiotic from frog skin, forms ion channels in lipid bilayer membranes. Eur J Pharmacol. 1992 Aug 3;226(4):287–296. doi: 10.1016/0922-4106(92)90045-w. [DOI] [PubMed] [Google Scholar]
  8. Csonka L. N., Hanson A. D. Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol. 1991;45:569–606. doi: 10.1146/annurev.mi.45.100191.003033. [DOI] [PubMed] [Google Scholar]
  9. Deamer D. W. Water chains in lipid bilayers. Biophys J. 1996 Aug;71(2):543–543. doi: 10.1016/S0006-3495(96)79258-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Disalvo E. A., Campos A. M., Abuin E., Lissi E. A. Surface changes induced by osmotic shrinkage on large unilamellar vesicles. Chem Phys Lipids. 1996 Nov 1;84(1):35–45. doi: 10.1016/s0009-3084(96)02617-5. [DOI] [PubMed] [Google Scholar]
  11. Duclohier H. Anion pores from magainins and related defensive peptides. Toxicology. 1994 Feb 28;87(1-3):175–188. doi: 10.1016/0300-483x(94)90160-0. [DOI] [PubMed] [Google Scholar]
  12. Ellens H., Bentz J., Szoka F. C. pH-induced destabilization of phosphatidylethanolamine-containing liposomes: role of bilayer contact. Biochemistry. 1984 Mar 27;23(7):1532–1538. doi: 10.1021/bi00302a029. [DOI] [PubMed] [Google Scholar]
  13. Epand R. M., Shai Y., Segrest J. P., Anantharamaiah G. M. Mechanisms for the modulation of membrane bilayer properties by amphipathic helical peptides. Biopolymers. 1995;37(5):319–338. doi: 10.1002/bip.360370504. [DOI] [PubMed] [Google Scholar]
  14. Ertel A., Marangoni A. G., Marsh J., Hallett F. R., Wood J. M. Mechanical properties of vesicles. I. Coordinated analysis of osmotic swelling and lysis. Biophys J. 1993 Feb;64(2):426–434. doi: 10.1016/S0006-3495(93)81383-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hallett F. R., Marsh J., Nickel B. G., Wood J. M. Mechanical properties of vesicles. II. A model for osmotic swelling and lysis. Biophys J. 1993 Feb;64(2):435–442. doi: 10.1016/S0006-3495(93)81384-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hirai Y., Yasuhara T., Yoshida H., Nakajima T., Fujino M., Kitada C. A new mast cell degranulating peptide "mastoparan" in the venom of Vespula lewisii. Chem Pharm Bull (Tokyo) 1979 Aug;27(8):1942–1944. doi: 10.1248/cpb.27.1942. [DOI] [PubMed] [Google Scholar]
  17. Huster D., Jin A. J., Arnold K., Gawrisch K. Water permeability of polyunsaturated lipid membranes measured by 17O NMR. Biophys J. 1997 Aug;73(2):855–864. doi: 10.1016/S0006-3495(97)78118-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jin A. J., Huster D., Gawrisch K., Nossal R. Light scattering characterization of extruded lipid vesicles. Eur Biophys J. 1999;28(3):187–199. doi: 10.1007/s002490050199. [DOI] [PubMed] [Google Scholar]
  19. Johnson S. M., Buttress N. The osmotic insensitivity of sonicated liposomes and the density of phospholipid-cholesterol mixtures. Biochim Biophys Acta. 1973 Apr 25;307(1):20–26. doi: 10.1016/0005-2736(73)90021-7. [DOI] [PubMed] [Google Scholar]
  20. Jones M. K., Anantharamaiah G. M., Segrest J. P. Computer programs to identify and classify amphipathic alpha helical domains. J Lipid Res. 1992 Feb;33(2):287–296. [PubMed] [Google Scholar]
  21. Loew L. M., Benson L., Lazarovici P., Rosenberg I. Fluorometric analysis of transferable membrane pores. Biochemistry. 1985 Apr 23;24(9):2101–2104. doi: 10.1021/bi00330a001. [DOI] [PubMed] [Google Scholar]
  22. Ludtke S. J., He K., Heller W. T., Harroun T. A., Yang L., Huang H. W. Membrane pores induced by magainin. Biochemistry. 1996 Oct 29;35(43):13723–13728. doi: 10.1021/bi9620621. [DOI] [PubMed] [Google Scholar]
  23. Maloy W. L., Kari U. P. Structure-activity studies on magainins and other host defense peptides. Biopolymers. 1995;37(2):105–122. doi: 10.1002/bip.360370206. [DOI] [PubMed] [Google Scholar]
  24. Matsuzaki K. Magainins as paradigm for the mode of action of pore forming polypeptides. Biochim Biophys Acta. 1998 Nov 10;1376(3):391–400. doi: 10.1016/s0304-4157(98)00014-8. [DOI] [PubMed] [Google Scholar]
  25. Matsuzaki K., Murase O., Fujii N., Miyajima K. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry. 1996 Sep 3;35(35):11361–11368. doi: 10.1021/bi960016v. [DOI] [PubMed] [Google Scholar]
  26. McIntyre J. C., Sleight R. G. Fluorescence assay for phospholipid membrane asymmetry. Biochemistry. 1991 Dec 24;30(51):11819–11827. doi: 10.1021/bi00115a012. [DOI] [PubMed] [Google Scholar]
  27. Mellor I. R., Sansom M. S. Ion-channel properties of mastoparan, a 14-residue peptide from wasp venom, and of MP3, a 12-residue analogue. Proc R Soc Lond B Biol Sci. 1990 Apr 23;239(1296):383–400. doi: 10.1098/rspb.1990.0022. [DOI] [PubMed] [Google Scholar]
  28. Moroz J. D., Nelson P. Dynamically stabilized pores in bilayer membranes. Biophys J. 1997 May;72(5):2211–2216. doi: 10.1016/S0006-3495(97)78864-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Morris C. E. Mechanosensitive ion channels. J Membr Biol. 1990 Feb;113(2):93–107. doi: 10.1007/BF01872883. [DOI] [PubMed] [Google Scholar]
  30. Mui B. L., Cullis P. R., Evans E. A., Madden T. D. Osmotic properties of large unilamellar vesicles prepared by extrusion. Biophys J. 1993 Feb;64(2):443–453. doi: 10.1016/S0006-3495(93)81385-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Mui B. L., Cullis P. R., Pritchard P. H., Madden T. D. Influence of plasma on the osmotic sensitivity of large unilamellar vesicles prepared by extrusion. J Biol Chem. 1994 Mar 11;269(10):7364–7370. [PubMed] [Google Scholar]
  32. Opsahl L. R., Webb W. W. Transduction of membrane tension by the ion channel alamethicin. Biophys J. 1994 Jan;66(1):71–74. doi: 10.1016/S0006-3495(94)80751-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Parente R. A., Nir S., Szoka F. C., Jr Mechanism of leakage of phospholipid vesicle contents induced by the peptide GALA. Biochemistry. 1990 Sep 18;29(37):8720–8728. doi: 10.1021/bi00489a031. [DOI] [PubMed] [Google Scholar]
  34. Polozov I. V., Polozova A. I., Anantharamaiah G. M., Segrest J. P., Epand R. M. Mixing rates can markedly affect the kinetics of peptide-induced leakage from liposomes. Biochem Mol Biol Int. 1994 Aug;33(6):1073–1079. [PubMed] [Google Scholar]
  35. Polozov I. V., Polozova A. I., Mishra V. K., Anantharamaiah G. M., Segrest J. P., Epand R. M. Studies of kinetics and equilibrium membrane binding of class A and class L model amphipathic peptides. Biochim Biophys Acta. 1998 Jan 19;1368(2):343–354. doi: 10.1016/s0005-2736(97)00210-1. [DOI] [PubMed] [Google Scholar]
  36. Polozov I. V., Polozova A. I., Molotkovsky J. G., Epand R. M. Amphipathic peptide affects the lateral domain organization of lipid bilayers. Biochim Biophys Acta. 1997 Sep 4;1328(2):125–139. doi: 10.1016/s0005-2736(97)00080-1. [DOI] [PubMed] [Google Scholar]
  37. Polozov I. V., Polozova A. I., Tytler E. M., Anantharamaiah G. M., Segrest J. P., Woolley G. A., Epand R. M. Role of lipids in the permeabilization of membranes by class L amphipathic helical peptides. Biochemistry. 1997 Jul 29;36(30):9237–9245. doi: 10.1021/bi970045l. [DOI] [PubMed] [Google Scholar]
  38. Reeves J. P., Dowben R. M. Formation and properties of thin-walled phospholipid vesicles. J Cell Physiol. 1969 Feb;73(1):49–60. doi: 10.1002/jcp.1040730108. [DOI] [PubMed] [Google Scholar]
  39. Sansom M. S. The biophysics of peptide models of ion channels. Prog Biophys Mol Biol. 1991;55(3):139–235. doi: 10.1016/0079-6107(91)90004-c. [DOI] [PubMed] [Google Scholar]
  40. Segrest J. P., De Loof H., Dohlman J. G., Brouillette C. G., Anantharamaiah G. M. Amphipathic helix motif: classes and properties. Proteins. 1990;8(2):103–117. doi: 10.1002/prot.340080202. [DOI] [PubMed] [Google Scholar]
  41. Smolarsky M., Teitelbaum D., Sela M., Gitler C. A simple fluorescent method to determine complement-mediated liposome immune lysis. J Immunol Methods. 1977;15(3):255–265. doi: 10.1016/0022-1759(77)90063-1. [DOI] [PubMed] [Google Scholar]
  42. Sung W., Park P. J. Dynamics of pore growth in membranes and membrane stability. Biophys J. 1997 Oct;73(4):1797–1804. doi: 10.1016/S0006-3495(97)78210-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Taupin C., Dvolaitzky M., Sauterey C. Osmotic pressure induced pores in phospholipid vesicles. Biochemistry. 1975 Oct 21;14(21):4771–4775. doi: 10.1021/bi00692a032. [DOI] [PubMed] [Google Scholar]
  44. Tytler E. M., Anantharamaiah G. M., Walker D. E., Mishra V. K., Palgunachari M. N., Segrest J. P. Molecular basis for prokaryotic specificity of magainin-induced lysis. Biochemistry. 1995 Apr 4;34(13):4393–4401. doi: 10.1021/bi00013a031. [DOI] [PubMed] [Google Scholar]
  45. Tytler E. M., Segrest J. P., Epand R. M., Nie S. Q., Epand R. F., Mishra V. K., Venkatachalapathi Y. V., Anantharamaiah G. M. Reciprocal effects of apolipoprotein and lytic peptide analogs on membranes. Cross-sectional molecular shapes of amphipathic alpha helixes control membrane stability. J Biol Chem. 1993 Oct 15;268(29):22112–22118. [PubMed] [Google Scholar]
  46. Venkatachalapathi Y. V., Phillips M. C., Epand R. M., Epand R. F., Tytler E. M., Segrest J. P., Anantharamaiah G. M. Effect of end group blockage on the properties of a class A amphipathic helical peptide. Proteins. 1993 Apr;15(4):349–359. doi: 10.1002/prot.340150403. [DOI] [PubMed] [Google Scholar]
  47. White G., Pencer J., Nickel B. G., Wood J. M., Hallett F. R. Optical changes in unilamellar vesicles experiencing osmotic stress. Biophys J. 1996 Nov;71(5):2701–2715. doi: 10.1016/S0006-3495(96)79461-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Wolf B. D., Hartsel S. C. Osmotic stress sensitizes sterol-free phospholipid bilayers to the action of Amphotericin B. Biochim Biophys Acta. 1995 Sep 13;1238(2):156–162. doi: 10.1016/0005-2736(95)00122-j. [DOI] [PubMed] [Google Scholar]
  49. Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci U S A. 1987 Aug;84(15):5449–5453. doi: 10.1073/pnas.84.15.5449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Zasloff M., Martin B., Chen H. C. Antimicrobial activity of synthetic magainin peptides and several analogues. Proc Natl Acad Sci U S A. 1988 Feb;85(3):910–913. doi: 10.1073/pnas.85.3.910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Zhelev D. V., Needham D. Tension-stabilized pores in giant vesicles: determination of pore size and pore line tension. Biochim Biophys Acta. 1993 Apr 8;1147(1):89–104. doi: 10.1016/0005-2736(93)90319-u. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES