Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Aug;81(2):969–982. doi: 10.1016/S0006-3495(01)75755-4

Dehydration induces lateral expansion of polyunsaturated 18:0-22:6 phosphatidylcholine in a new lamellar phase.

H Binder 1, K Gawrisch 1
PMCID: PMC1301567  PMID: 11463639

Abstract

To gain a better understanding of the biological role of polyunsaturated phospholipids, infrared (IR) linear dichroism, NMR, and x-ray diffraction studies have been conducted on the lyotropic phase behavior and bilayer dimensions of sn-1 chain perdeuterated 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (SDPC-d35), a mixed-chain saturated (18:0)-polyunsaturated (22:6 omega 3) lipid. SDPC films were hydrated at definite values of temperature (T) and relative humidity (RH). In excess water, the lipid forms exclusively lamellar phases in the temperature range 0--50 degrees C. Upon dehydration the lipid undergoes the main phase transition between the liquid-crystalline (L(alpha)) and gel (L(beta)) phase at T < 15 degrees C. Both the saturated and polyunsaturated chains adopt a stretched conformation in the L(beta) phase, presumably the all-trans (stearoyl) and angle iron or helical (docosahexaenoyl) one. A new fluid lamellar phase (L(alpha)') was found in partially hydrated samples at T > 15 degrees C. SDPC membranes expand laterally and contract vertically in the L(alpha)' phase when water was removed. This tendency is in sharp contrast to typical dehydration-induced changes of membrane dimensions. The slope of the phase transition lines in the RH-T phase diagram reveal that the lyotropic L(alpha)'-L(alpha) and L(beta)-L(alpha) transitions are driven by enthalpy and entropy, respectively The possible molecular origin of the phase transitions is discussed. The properties of SDPC are compared with that of membranes of monounsaturated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC-d31).

Full Text

The Full Text of this article is available as a PDF (212.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Applegate K. R., Glomset J. A. Computer-based modeling of the conformation and packing properties of docosahexaenoic acid. J Lipid Res. 1986 Jun;27(6):658–680. [PubMed] [Google Scholar]
  2. Binder H., Gutberlet T., Anikin A., Klose G. Hydration of the dienic lipid dioctadecadienoylphosphatidylcholine in the lamellar phase--an infrared linear dichroism and x-ray study on headgroup orientation, water ordering, and bilayer dimensions. Biophys J. 1998 Apr;74(4):1908–1923. doi: 10.1016/S0006-3495(98)77900-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Binder H, Kohlstrunk B, Heerklotz HH. Hydration and Lyotropic Melting of Amphiphilic Molecules: A Thermodynamic Study Using Humidity Titration Calorimetry. J Colloid Interface Sci. 1999 Dec 15;220(2):235–249. doi: 10.1006/jcis.1999.6501. [DOI] [PubMed] [Google Scholar]
  4. Blume A., Hübner W., Messner G. Fourier transform infrared spectroscopy of 13C = O-labeled phospholipids hydrogen bonding to carbonyl groups. Biochemistry. 1988 Oct 18;27(21):8239–8249. doi: 10.1021/bi00421a038. [DOI] [PubMed] [Google Scholar]
  5. Crawford M. A., Hassam A. G., Williams G., Whitehouse W. Fetal accumulation of long-chain polyunsaturated fatty acids. Adv Exp Med Biol. 1977;83:135–143. doi: 10.1007/978-1-4684-3276-3_13. [DOI] [PubMed] [Google Scholar]
  6. Everts S., Davis J. H. 1H and (13)C NMR of multilamellar dispersions of polyunsaturated (22:6) phospholipids. Biophys J. 2000 Aug;79(2):885–897. doi: 10.1016/S0006-3495(00)76344-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. He K., Ludtke S. J., Heller W. T., Huang H. W. Mechanism of alamethicin insertion into lipid bilayers. Biophys J. 1996 Nov;71(5):2669–2679. doi: 10.1016/S0006-3495(96)79458-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Holte L. L., Peter S. A., Sinnwell T. M., Gawrisch K. 2H nuclear magnetic resonance order parameter profiles suggest a change of molecular shape for phosphatidylcholines containing a polyunsaturated acyl chain. Biophys J. 1995 Jun;68(6):2396–2403. doi: 10.1016/S0006-3495(95)80422-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hsieh C. H., Sue S. C., Lyu P. C., Wu W. G. Membrane packing geometry of diphytanoylphosphatidylcholine is highly sensitive to hydration: phospholipid polymorphism induced by molecular rearrangement in the headgroup region. Biophys J. 1997 Aug;73(2):870–877. doi: 10.1016/S0006-3495(97)78120-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hung W. C., Chen F. Y., Huang H. W. Order-disorder transition in bilayers of diphytanoyl phosphatidylcholine. Biochim Biophys Acta. 2000 Jul 31;1467(1):198–206. doi: 10.1016/s0005-2736(00)00221-2. [DOI] [PubMed] [Google Scholar]
  11. Huster D., Jin A. J., Arnold K., Gawrisch K. Water permeability of polyunsaturated lipid membranes measured by 17O NMR. Biophys J. 1997 Aug;73(2):855–864. doi: 10.1016/S0006-3495(97)78118-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huster D., Paasche G., Dietrich U., Zschörnig O., Gutberlet T., Gawrisch K., Arnold K. Investigation of phospholipid area compression induced by calcium-mediated dextran sulfate interaction. Biophys J. 1999 Aug;77(2):879–887. doi: 10.1016/S0006-3495(99)76939-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ichimori H., Hata T., Matsuki H., Kaneshina S. Barotropic phase transitions and pressure-induced interdigitation on bilayer membranes of phospholipids with varying acyl chain lengths. Biochim Biophys Acta. 1998 Nov 11;1414(1-2):165–174. doi: 10.1016/s0005-2736(98)00165-5. [DOI] [PubMed] [Google Scholar]
  14. Janiak M. J., Small D. M., Shipley G. G. Temperature and compositional dependence of the structure of hydrated dimyristoyl lecithin. J Biol Chem. 1979 Jul 10;254(13):6068–6078. [PubMed] [Google Scholar]
  15. Kim J. T., Mattai J., Shipley G. G. Gel phase polymorphism in ether-linked dihexadecylphosphatidylcholine bilayers. Biochemistry. 1987 Oct 20;26(21):6592–6598. doi: 10.1021/bi00395a005. [DOI] [PubMed] [Google Scholar]
  16. Kodati V. R., Lafleur M. Comparison between orientational and conformational orders in fluid lipid bilayers. Biophys J. 1993 Jan;64(1):163–170. doi: 10.1016/S0006-3495(93)81351-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Koenig B. W., Strey H. H., Gawrisch K. Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. Biophys J. 1997 Oct;73(4):1954–1966. doi: 10.1016/S0006-3495(97)78226-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koynova R., Caffrey M. Phases and phase transitions of the phosphatidylcholines. Biochim Biophys Acta. 1998 Jun 29;1376(1):91–145. doi: 10.1016/s0304-4157(98)00006-9. [DOI] [PubMed] [Google Scholar]
  19. Lafleur M., Fine B., Sternin E., Cullis P. R., Bloom M. Smoothed orientational order profile of lipid bilayers by 2H-nuclear magnetic resonance. Biophys J. 1989 Nov;56(5):1037–1041. doi: 10.1016/S0006-3495(89)82749-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Litman B. J., Lewis E. N., Levin I. W. Packing characteristics of highly unsaturated bilayer lipids: Raman spectroscopic studies of multilamellar phosphatidylcholine dispersions. Biochemistry. 1991 Jan 15;30(2):313–319. doi: 10.1021/bi00216a001. [DOI] [PubMed] [Google Scholar]
  21. Mitchell D. C., Gawrisch K., Litman B. J., Salem N., Jr Why is docosahexaenoic acid essential for nervous system function? Biochem Soc Trans. 1998 Aug;26(3):365–370. doi: 10.1042/bst0260365. [DOI] [PubMed] [Google Scholar]
  22. Nagle J. F., Tristram-Nagle S. Structure of lipid bilayers. Biochim Biophys Acta. 2000 Nov 10;1469(3):159–195. doi: 10.1016/s0304-4157(00)00016-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Olbrich K., Rawicz W., Needham D., Evans E. Water permeability and mechanical strength of polyunsaturated lipid bilayers. Biophys J. 2000 Jul;79(1):321–327. doi: 10.1016/S0006-3495(00)76294-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Paddy M. R., Dahlquist F. W., Dratz E. A., Deese A. J. Simultaneous observation of order and dynamics at several defined positions in a single acyl chain using 2H NMR of single acyl chain perdeuterated phosphatidylcholines. Biochemistry. 1985 Oct 8;24(21):5988–5995. doi: 10.1021/bi00342a045. [DOI] [PubMed] [Google Scholar]
  25. Parsegian V. A., Fuller N., Rand R. P. Measured work of deformation and repulsion of lecithin bilayers. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2750–2754. doi: 10.1073/pnas.76.6.2750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pascher I., Lundmark M., Nyholm P. G., Sundell S. Crystal structures of membrane lipids. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):339–373. doi: 10.1016/0304-4157(92)90006-v. [DOI] [PubMed] [Google Scholar]
  27. Pohle W., Selle C., Fritzsche H., Binder H. Fourier transform infrared spectroscopy as a probe for the study of the hydration of lipid self-assemblies. I. Methodology and general phenomena. Biospectroscopy. 1998;4(4):267–280. doi: 10.1002/(sici)1520-6343(1998)4:4<267::aid-bspy5>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  28. Rawicz W., Olbrich K. C., McIntosh T., Needham D., Evans E. Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J. 2000 Jul;79(1):328–339. doi: 10.1016/S0006-3495(00)76295-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schiller J., Arnhold J., Benard S., Müller M., Reichl S., Arnold K. Lipid analysis by matrix-assisted laser desorption and ionization mass spectrometry: A methodological approach. Anal Biochem. 1999 Feb 1;267(1):46–56. doi: 10.1006/abio.1998.3001. [DOI] [PubMed] [Google Scholar]
  30. Separovic F., Gawrisch K. Effect of unsaturation on the chain order of phosphatidylcholines in a dioleoylphosphatidylethanolamine matrix. Biophys J. 1996 Jul;71(1):274–282. doi: 10.1016/S0006-3495(96)79223-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES