Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Aug;81(2):1014–1028. doi: 10.1016/S0006-3495(01)75759-1

Responding phospholipid membranes--interplay between hydration and permeability.

E Sparr 1, H Wennerström 1
PMCID: PMC1301571  PMID: 11463643

Abstract

Osmotic forces are important in regulating a number of physiological membrane processes. The effect of osmotic pressure on lipid phase behavior is of utmost importance for the extracellular lipids in stratum corneum (the outer part of human skin), due to the large gradient in water chemical potential between the water-rich tissue on the inside, and the relative dry environment on the outside of the body. We present a theoretical model for molecular diffusional transport over an oriented stack of two-component lipid bilayers in the presence of a gradient in osmotic pressure. This gradient serves as the driving force for diffusional motion of water. It also causes a gradient in swelling and phase transformations, which profoundly affect the molecular environment and thus the local diffusion properties. This feedback mechanism generates a nonlinear transport behavior, which we illustrate by calculations of the flux of water and solute (nicotine) through the bilayer stack. The calculated water flux shows qualitative agreement with experimental findings for water flux through stratum corneum. We also present a physical basis for the occlusion effect. Phase behavior of binary phospholipid mixtures at varying osmotic pressures is modeled from the known interlamellar forces and the regular solution theory. A first-order phase transformation from a gel to a liquid--crystalline phase can be induced by an increase in the osmotic pressure. In the bilayer stack, a transition can be induced along the gradient. The boundary conditions in water chemical potential can thus act as a switch for the membrane permeability.

Full Text

The Full Text of this article is available as a PDF (270.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blank I. H., Moloney J., 3rd, Emslie A. G., Simon I., Apt C. The diffusion of water across the stratum corneum as a function of its water content. J Invest Dermatol. 1984 Feb;82(2):188–194. doi: 10.1111/1523-1747.ep12259835. [DOI] [PubMed] [Google Scholar]
  2. Blok M. C., van der Neut-Kok E. C., van Deenen L. L., de Gier J. The effect of chain length and lipid phase transitions on the selective permeability properties of liposomes. Biochim Biophys Acta. 1975 Oct 6;406(2):187–196. doi: 10.1016/0005-2736(75)90003-6. [DOI] [PubMed] [Google Scholar]
  3. Bloom M., Evans E., Mouritsen O. G. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991 Aug;24(3):293–397. doi: 10.1017/s0033583500003735. [DOI] [PubMed] [Google Scholar]
  4. Clerc S. G., Thompson T. E. Permeability of dimyristoyl phosphatidylcholine/dipalmitoyl phosphatidylcholine bilayer membranes with coexisting gel and liquid-crystalline phases. Biophys J. 1995 Jun;68(6):2333–2341. doi: 10.1016/S0006-3495(95)80415-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cruzeiro-Hansson L., Mouritsen O. G. Passive ion permeability of lipid membranes modelled via lipid-domain interfacial area. Biochim Biophys Acta. 1988 Sep 15;944(1):63–72. doi: 10.1016/0005-2736(88)90316-1. [DOI] [PubMed] [Google Scholar]
  6. Davis A. D., Weatherby T. M., Hartline D. K., Lenz P. H. Myelin-like sheaths in copepod axons. Nature. 1999 Apr 15;398(6728):571–571. doi: 10.1038/19212. [DOI] [PubMed] [Google Scholar]
  7. Forslind B. A domain mosaic model of the skin barrier. Acta Derm Venereol. 1994 Jan;74(1):1–6. doi: 10.2340/000155557416. [DOI] [PubMed] [Google Scholar]
  8. Francoeur M. L., Golden G. M., Potts R. O. Oleic acid: its effects on stratum corneum in relation to (trans)dermal drug delivery. Pharm Res. 1990 Jun;7(6):621–627. doi: 10.1023/a:1015822312426. [DOI] [PubMed] [Google Scholar]
  9. Gay C. L., Guy R. H., Golden G. M., Mak V. H., Francoeur M. L. Characterization of low-temperature (i.e., < 65 degrees C) lipid transitions in human stratum corneum. J Invest Dermatol. 1994 Aug;103(2):233–239. doi: 10.1111/1523-1747.ep12393214. [DOI] [PubMed] [Google Scholar]
  10. Gliss C., Clausen-Schaumann H., Günther R., Odenbach S., Randl O., Bayerl T. M. Direct detection of domains in phospholipid bilayers by grazing incidence diffraction of neutrons and atomic force microscopy. Biophys J. 1998 May;74(5):2443–2450. doi: 10.1016/S0006-3495(98)77952-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hatcher M. E., Plachy W. Z. Dioxygen diffusion in the stratum corneum: an EPR spin label study. Biochim Biophys Acta. 1993 Jun 18;1149(1):73–78. doi: 10.1016/0005-2736(93)90026-v. [DOI] [PubMed] [Google Scholar]
  12. Ipsen J. H., Mouritsen O. G. Modelling the phase equilibria in two-component membranes of phospholipids with different acyl-chain lengths. Biochim Biophys Acta. 1988 Oct 6;944(2):121–134. doi: 10.1016/0005-2736(88)90425-7. [DOI] [PubMed] [Google Scholar]
  13. Janiak M. J., Small D. M., Shipley G. G. Temperature and compositional dependence of the structure of hydrated dimyristoyl lecithin. J Biol Chem. 1979 Jul 10;254(13):6068–6078. [PubMed] [Google Scholar]
  14. Johnson M. E., Mitragotri S., Patel A., Blankschtein D., Langer R. Synergistic effects of chemical enhancers and therapeutic ultrasound on transdermal drug delivery. J Pharm Sci. 1996 Jul;85(7):670–679. doi: 10.1021/js960079z. [DOI] [PubMed] [Google Scholar]
  15. Kitson N., Thewalt J. L. Hypothesis: the epidermal permeability barrier is a porous medium. Acta Derm Venereol Suppl (Stockh) 2000;208:12–15. doi: 10.1080/000155500750042808. [DOI] [PubMed] [Google Scholar]
  16. Langner M., Hui S. Effect of free fatty acids on the permeability of 1,2-dimyristoyl-sn-glycero-3-phosphocholine bilayer at the main phase transition. Biochim Biophys Acta. 2000 Feb 15;1463(2):439–447. doi: 10.1016/s0005-2736(99)00236-9. [DOI] [PubMed] [Google Scholar]
  17. Lis L. J., McAlister M., Fuller N., Rand R. P., Parsegian V. A. Interactions between neutral phospholipid bilayer membranes. Biophys J. 1982 Mar;37(3):657–665. [PMC free article] [PubMed] [Google Scholar]
  18. Lis L. J., McAlister M., Fuller N., Rand R. P., Parsegian V. A. Measurement of the lateral compressibility of several phospholipid bilayers. Biophys J. 1982 Mar;37(3):667–672. [PMC free article] [PubMed] [Google Scholar]
  19. Mabrey S., Sturtevant J. M. Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3862–3866. doi: 10.1073/pnas.73.11.3862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mandal T. K., Downing D. T. Freeze-fracture electron microscopic and osmotic water permeability studies of epidermal lipid liposomes derived from stratum corneum lipids of porcine epidermis. Acta Derm Venereol. 1993 Feb;73(1):12–17. doi: 10.2340/00015555731217. [DOI] [PubMed] [Google Scholar]
  21. Mesquita R. M., Melo E., Thompson T. E., Vaz W. L. Partitioning of amphiphiles between coexisting ordered and disordered phases in two-phase lipid bilayer membranes. Biophys J. 2000 Jun;78(6):3019–3025. doi: 10.1016/S0006-3495(00)76840-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mouritsen O. G., Jørgensen K. A new look at lipid-membrane structure in relation to drug research. Pharm Res. 1998 Oct;15(10):1507–1519. doi: 10.1023/a:1011986613392. [DOI] [PubMed] [Google Scholar]
  23. Mouritsen O. G., Jørgensen K. Small-scale lipid-membrane structure: simulation versus experiment. Curr Opin Struct Biol. 1997 Aug;7(4):518–527. doi: 10.1016/s0959-440x(97)80116-9. [DOI] [PubMed] [Google Scholar]
  24. Norlén L., Nicander I., Lundsjö A., Cronholm T., Forslind B. A new HPLC-based method for the quantitative analysis of inner stratum corneum lipids with special reference to the free fatty acid fraction. Arch Dermatol Res. 1998 Sep;290(9):508–516. doi: 10.1007/s004030050344. [DOI] [PubMed] [Google Scholar]
  25. Parsegian V. A., Fuller N., Rand R. P. Measured work of deformation and repulsion of lecithin bilayers. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2750–2754. doi: 10.1073/pnas.76.6.2750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Potts R. O., Francoeur M. L. Lipid biophysics of water loss through the skin. Proc Natl Acad Sci U S A. 1990 May;87(10):3871–3873. doi: 10.1073/pnas.87.10.3871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rietveld A., Simons K. The differential miscibility of lipids as the basis for the formation of functional membrane rafts. Biochim Biophys Acta. 1998 Nov 10;1376(3):467–479. doi: 10.1016/s0304-4157(98)00019-7. [DOI] [PubMed] [Google Scholar]
  28. Shah J., Atienza J. M., Rawlings A. V., Shipley G. G. Physical properties of ceramides: effect of fatty acid hydroxylation. J Lipid Res. 1995 Sep;36(9):1945–1955. [PubMed] [Google Scholar]
  29. Shimshick E. J., McConnell H. M. Lateral phase separation in phospholipid membranes. Biochemistry. 1973 Jun 5;12(12):2351–2360. doi: 10.1021/bi00736a026. [DOI] [PubMed] [Google Scholar]
  30. Smith S. W., Anderson B. D. Human skin permeability enhancement by lauric acid under equilibrium aqueous conditions. J Pharm Sci. 1995 May;84(5):551–556. doi: 10.1002/jps.2600840507. [DOI] [PubMed] [Google Scholar]
  31. Sugár I. P., Thompson T. E., Biltonen R. L. Monte Carlo simulation of two-component bilayers: DMPC/DSPC mixtures. Biophys J. 1999 Apr;76(4):2099–2110. doi: 10.1016/S0006-3495(99)77366-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ulmius J., Wennerström H., Lindblom G., Arvidson G. Deuteron nuclear magnetic resonance studies of phase equilibria in a lecithin-water system. Biochemistry. 1977 Dec 27;16(26):5742–5745. doi: 10.1021/bi00645a014. [DOI] [PubMed] [Google Scholar]
  33. Wertz P. W., Swartzendruber D. C., Madison K. C., Downing D. T. Composition and morphology of epidermal cyst lipids. J Invest Dermatol. 1987 Oct;89(4):419–425. doi: 10.1111/1523-1747.ep12471781. [DOI] [PubMed] [Google Scholar]
  34. White S. H., Mirejovsky D., King G. I. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. An X-ray diffraction study. Biochemistry. 1988 May 17;27(10):3725–3732. doi: 10.1021/bi00410a031. [DOI] [PubMed] [Google Scholar]
  35. Xiang T. X., Anderson B. D. Phase structures of binary lipid bilayers as revealed by permeability of small molecules. Biochim Biophys Acta. 1998 Mar 6;1370(1):64–76. doi: 10.1016/s0005-2736(97)00244-7. [DOI] [PubMed] [Google Scholar]
  36. ten Grotenhuis E., Demel R. A., Ponec M., Boer D. R., van Miltenburg J. C., Bouwstra J. A. Phase behavior of stratum corneum lipids in mixed Langmuir-Blodgett monolayers. Biophys J. 1996 Sep;71(3):1389–1399. doi: 10.1016/S0006-3495(96)79341-4. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES