Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Aug;81(2):1101–1114. doi: 10.1016/s0006-3495(01)75767-0

Effect of ionic strength on the conformation of myosin subfragment 1-nucleotide complexes.

Y M Peyser 1, K Ajtai 1, T P Burghardt 1, A Muhlrad 1
PMCID: PMC1301579  PMID: 11463651

Abstract

The effect of ionic strength on the conformation and stability of S1 and S1-nucleotide-phosphate analog complexes in solution was studied. It was found that increasing concentration of KCl enhances the reactivity of Cys(707) (SH1 thiol) and Lys(84) (reactive lysyl residue) and the nucleotide-induced tryptophan fluorescence increment. In contrast, high KCl concentration lowers the structural differences between the intermediate states of ATP hydrolysis in the vicinity of Cys(707), Trp(510) and the active site, possibly by increasing the flexibility of the molecule. High concentrations of neutral salts inhibit both the formation and the dissociation of the M**.ADP.Pi analog S1.ADP.Vi complex. High ionic strength profoundly affects the structure of the stable S1.ADP.BeF(x) complex, by destabilizing the M*.ATP intermediate, which is the predominant form of the complex at low ionic strength, and shifting the equilibrium to favor the M**.ADP.Pi state. The M*.ATP intermediate is destabilized by perturbation of ionic interactions possibly by disruption of salt bridges. Two salt-bridge pairs, Glu(501)-Lys(505) in the Switch II helix and Glu(776)-Lys(84) connecting the catalytic domain to the lever arm, seem most appropriate to consider for participating in the ionic strength-induced transition of the open M*.ATP to the closed M**.ADP.Pi state of S1.

Full Text

The Full Text of this article is available as a PDF (144.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajtai K., Dai F., Park S., Zayas C. R., Peyser Y. M., Muhlrad A., Burghardt T. P. Near UV circular dichroism from biomimetic model compounds define the coordination geometry of vanadate centers in MeVi- and MeADPVi-rabbit myosin subfragment 1 complexes in solution. Biophys Chem. 1998 Apr 20;71(2-3):205–220. doi: 10.1016/s0301-4622(98)00097-0. [DOI] [PubMed] [Google Scholar]
  2. Ajtai K., Peyser Y. M., Park S., Burghardt T. P., Muhlrad A. Trinitrophenylated reactive lysine residue in myosin detects lever arm movement during the consecutive steps of ATP hydrolysis. Biochemistry. 1999 May 18;38(20):6428–6440. doi: 10.1021/bi990149r. [DOI] [PubMed] [Google Scholar]
  3. Bagshaw C. R., Trentham D. R. The characterization of myosin-product complexes and of product-release steps during the magnesium ion-dependent adenosine triphosphatase reaction. Biochem J. 1974 Aug;141(2):331–349. doi: 10.1042/bj1410331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Batra R., Manstein D. J. Functional characterisation of Dictyostelium myosin II with conserved tryptophanyl residue 501 mutated to tyrosine. Biol Chem. 1999 Jul-Aug;380(7-8):1017–1023. doi: 10.1515/BC.1999.126. [DOI] [PubMed] [Google Scholar]
  5. Dominguez R., Freyzon Y., Trybus K. M., Cohen C. Crystal structure of a vertebrate smooth muscle myosin motor domain and its complex with the essential light chain: visualization of the pre-power stroke state. Cell. 1998 Sep 4;94(5):559–571. doi: 10.1016/s0092-8674(00)81598-6. [DOI] [PubMed] [Google Scholar]
  6. Fisher A. J., Smith C. A., Thoden J. B., Smith R., Sutoh K., Holden H. M., Rayment I. X-ray structures of the myosin motor domain of Dictyostelium discoideum complexed with MgADP.BeFx and MgADP.AlF4-. Biochemistry. 1995 Jul 18;34(28):8960–8972. doi: 10.1021/bi00028a004. [DOI] [PubMed] [Google Scholar]
  7. Fábián F., Mühlrad A. Effect of trinitrophenylation on myosin ATPase. Biochim Biophys Acta. 1968 Nov 26;162(4):596–603. doi: 10.1016/0005-2728(68)90065-0. [DOI] [PubMed] [Google Scholar]
  8. Geeves M. A., Holmes K. C. Structural mechanism of muscle contraction. Annu Rev Biochem. 1999;68:687–728. doi: 10.1146/annurev.biochem.68.1.687. [DOI] [PubMed] [Google Scholar]
  9. Goodno C. C. Inhibition of myosin ATPase by vanadate ion. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2620–2624. doi: 10.1073/pnas.76.6.2620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Goody R. S., Hofmann W. Stereochemical aspects of the interaction of myosin and actomyosin with nucleotides. J Muscle Res Cell Motil. 1980 Mar;1(1):101–115. doi: 10.1007/BF00711928. [DOI] [PubMed] [Google Scholar]
  11. Gulick A. M., Rayment I. Structural studies on myosin II: communication between distant protein domains. Bioessays. 1997 Jul;19(7):561–569. doi: 10.1002/bies.950190707. [DOI] [PubMed] [Google Scholar]
  12. Henry G. D., Maruta S., Ikebe M., Sykes B. D. Observation of multiple myosin subfragment 1-ADP-fluoroberyllate complexes by 19F NMR spectroscopy. Biochemistry. 1993 Oct 5;32(39):10451–10456. doi: 10.1021/bi00090a022. [DOI] [PubMed] [Google Scholar]
  13. Holmes K. C. Muscle contraction. Novartis Found Symp. 1998;213:76–92. [PubMed] [Google Scholar]
  14. Houdusse A., Kalabokis V. N., Himmel D., Szent-Györgyi A. G., Cohen C. Atomic structure of scallop myosin subfragment S1 complexed with MgADP: a novel conformation of the myosin head. Cell. 1999 May 14;97(4):459–470. doi: 10.1016/s0092-8674(00)80756-4. [DOI] [PubMed] [Google Scholar]
  15. Hozumi T., Muhlrad A. Reactive lysyl of myosin subfragment 1: location on the 27K fragment and labeling properties. Biochemistry. 1981 May 12;20(10):2945–2950. doi: 10.1021/bi00513a035. [DOI] [PubMed] [Google Scholar]
  16. Johnson K. A., Taylor E. W. Intermediate states of subfragment 1 and actosubfragment 1 ATPase: reevaluation of the mechanism. Biochemistry. 1978 Aug 22;17(17):3432–3442. doi: 10.1021/bi00610a002. [DOI] [PubMed] [Google Scholar]
  17. Johnson W. C., Jr, Bivin D. B., Ue K., Morales M. F. A search for protein structural changes accompanying the contractile interaction. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9748–9750. doi: 10.1073/pnas.88.21.9748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. KUBO S., TOKURA S., TONOMURA Y. On the active site of myosin A-adenosine triphosphatase. I. Reaction of the enzyme with trinitrobenzenesulfonate. J Biol Chem. 1960 Oct;235:2835–2839. [PubMed] [Google Scholar]
  19. Kodama T., Fukui K., Kometani K. The initial phosphate burst in ATP hydrolysis by myosin and subfragment-1 as studied by a modified malachite green method for determination of inorganic phosphate. J Biochem. 1986 May;99(5):1465–1472. doi: 10.1093/oxfordjournals.jbchem.a135616. [DOI] [PubMed] [Google Scholar]
  20. Maita T., Yajima E., Nagata S., Miyanishi T., Nakayama S., Matsuda G. The primary structure of skeletal muscle myosin heavy chain: IV. Sequence of the rod, and the complete 1,938-residue sequence of the heavy chain. J Biochem. 1991 Jul;110(1):75–87. doi: 10.1093/oxfordjournals.jbchem.a123546. [DOI] [PubMed] [Google Scholar]
  21. Maruta S., Henry G. D., Sykes B. D., Ikebe M. Formation of the stable myosin-ADP-aluminum fluoride and myosin-ADP-beryllium fluoride complexes and their analysis using 19F NMR. J Biol Chem. 1993 Apr 5;268(10):7093–7100. [PubMed] [Google Scholar]
  22. Mornet D., Pantel P., Bertrand R., Audemard E., Kassab R. Localization of the reactive trinitrophenylated lysyl residue of myosin ATPase site in the NH2-terminal (27 k domain) of S1 heavy chain. FEBS Lett. 1980 Aug 11;117(1):183–188. doi: 10.1016/0014-5793(80)80941-0. [DOI] [PubMed] [Google Scholar]
  23. Muhlrad A., Takashi R. Ionization of reactive lysyl residue to myosin subfragment 1. Biochemistry. 1981 Nov 24;20(24):6749–6754. doi: 10.1021/bi00527a002. [DOI] [PubMed] [Google Scholar]
  24. Mühlrad A., Fábián F. Effects of substrate and substrate analogues on the trinitrophenylation of myosin. Biochim Biophys Acta. 1970 Sep 1;216(2):422–427. doi: 10.1016/0005-2728(70)90234-3. [DOI] [PubMed] [Google Scholar]
  25. Onishi H., Kojima S., Katoh K., Fujiwara K., Martinez H. M., Morales M. F. Functional transitions in myosin: formation of a critical salt-bridge and transmission of effect to the sensitive tryptophan. Proc Natl Acad Sci U S A. 1998 Jun 9;95(12):6653–6658. doi: 10.1073/pnas.95.12.6653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Onishi H., Konishi K., Fujiwara K., Hayakawa K., Tanokura M., Martinez H. M., Morales M. F. On the tryptophan residue of smooth muscle myosin that responds to binding of nucleotide. Proc Natl Acad Sci U S A. 2000 Oct 10;97(21):11203–11208. doi: 10.1073/pnas.200362897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Park S., Ajtai K., Burghardt T. P. Cleft containing reactive thiol of myosin closes during ATP hydrolysis. Biochim Biophys Acta. 1996 Aug 15;1296(1):1–4. doi: 10.1016/0167-4838(96)00086-6. [DOI] [PubMed] [Google Scholar]
  28. Park S., Burghardt T. P. Isolating and localizing ATP-sensitive tryptophan emission in skeletal myosin subfragment 1. Biochemistry. 2000 Sep 26;39(38):11732–11741. doi: 10.1021/bi000945t. [DOI] [PubMed] [Google Scholar]
  29. Peyser Y. M., Ajtai K., Werber M. M., Burghardt T. P., Muhlrad A. Effect of metal cations on the conformation of myosin subfragment-1-ADP-phosphate analog complexes: a near-UV circular dichroism study. Biochemistry. 1997 Apr 29;36(17):5170–5178. doi: 10.1021/bi970255y. [DOI] [PubMed] [Google Scholar]
  30. Peyser Y. M., Ben-Hur M., Werber M. M., Muhlrad A. Effect of divalent cations on the formation and stability of myosin subfragment 1-ADP-phosphate analog complexes. Biochemistry. 1996 Apr 9;35(14):4409–4416. doi: 10.1021/bi952565r. [DOI] [PubMed] [Google Scholar]
  31. Phan B. C., Peyser Y. M., Reisler E., Muhlrad A. Effect of complexes of ADP and phosphate analogs on the conformation of the Cys707-Cys697 region of myosin subfragment 1. Eur J Biochem. 1997 Feb 1;243(3):636–642. doi: 10.1111/j.1432-1033.1997.00636.x. [DOI] [PubMed] [Google Scholar]
  32. Phan B., Reisler E. Inhibition of myosin ATPase by beryllium fluoride. Biochemistry. 1992 May 26;31(20):4787–4793. doi: 10.1021/bi00135a007. [DOI] [PubMed] [Google Scholar]
  33. Smith C. A., Rayment I. X-ray structure of the magnesium(II).ADP.vanadate complex of the Dictyostelium discoideum myosin motor domain to 1.9 A resolution. Biochemistry. 1996 Apr 30;35(17):5404–5417. doi: 10.1021/bi952633+. [DOI] [PubMed] [Google Scholar]
  34. Strickland E. H. Aromatic contributions to circular dichroism spectra of proteins. CRC Crit Rev Biochem. 1974 Jan;2(1):113–175. doi: 10.3109/10409237409105445. [DOI] [PubMed] [Google Scholar]
  35. TONOMURA Y., YOSHIMURA J., OHNISHI T. ON THE ACTIVE SITE OF MYOSIN A-ADENOSINE TRIPHOSPHATASE. IV. PROPERTIES OF BINDING OF TRINITROBENZENESULFONATE AND P-CHLOROMERCURIBENZOATE TO MYOSIN A. Biochim Biophys Acta. 1963 Dec 13;78:698–704. doi: 10.1016/0006-3002(63)91035-7. [DOI] [PubMed] [Google Scholar]
  36. Tonomura Y., Appel P., Morales M. On the molecular weight of myosin. II. Biochemistry. 1966 Feb;5(2):515–521. doi: 10.1021/bi00866a017. [DOI] [PubMed] [Google Scholar]
  37. VONHIPPEL P. H., WONG K. Y. NEUTRAL SALTS: THE GENERALITY OF THEIR EFFECTS ON THE STABILITY OF MACROMOLECULAR CONFORMATIONS. Science. 1964 Aug 7;145(3632):577–580. doi: 10.1126/science.145.3632.577. [DOI] [PubMed] [Google Scholar]
  38. Weeds A. G., Taylor R. S. Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin. Nature. 1975 Sep 4;257(5521):54–56. doi: 10.1038/257054a0. [DOI] [PubMed] [Google Scholar]
  39. Werber M. M., Peyser Y. M., Muhlrad A. Characterization of stable beryllium fluoride, aluminum fluoride, and vanadate containing myosin subfragment 1-nucleotide complexes. Biochemistry. 1992 Aug 11;31(31):7190–7197. doi: 10.1021/bi00146a023. [DOI] [PubMed] [Google Scholar]
  40. Werber M. M., Szent-Györgyi A. G., Fasman G. D. Fluorescence studies on heavy meromyosin-substrate interaction. Biochemistry. 1972 Jul 18;11(15):2872–2883. doi: 10.1021/bi00765a021. [DOI] [PubMed] [Google Scholar]
  41. Yengo C. M., Chrin L. R., Rovner A. S., Berger C. L. Tryptophan 512 is sensitive to conformational changes in the rigid relay loop of smooth muscle myosin during the MgATPase cycle. J Biol Chem. 2000 Aug 18;275(33):25481–25487. doi: 10.1074/jbc.M002910200. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES