Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Aug;81(2):1127–1132. doi: 10.1016/S0006-3495(01)75769-4

Aggregation of nucleosomes by divalent cations.

M de Frutos 1, E Raspaud 1, A Leforestier 1, F Livolant 1
PMCID: PMC1301581  PMID: 11463653

Abstract

Conditions of precipitation of nucleosome core particles (NCP) by divalent cations (Ca(2+) and Mg(2+)) have been explored over a large range of nucleosome and cation concentrations. Precipitation of NCP occurs for a threshold of divalent cation concentration, and redissolution is observed for further addition of salt. The phase diagram looks similar to those obtained with DNA and synthetic polyelectrolytes in the presence of multivalent cations, which supports the idea that NCP/NCP interactions are driven by cation condensation. In the phase separation domain the effective charge of the aggregates was determined by measurements of their electrophoretic mobility. Aggregates formed in the presence of divalent cations (Mg(2+)) remain negatively charged over the whole concentration range. They turn positively charged when aggregation is induced by trivalent (spermidine) or tetravalent (spermine) cations. The higher the valency of the counterions, the more significant is the reversal of the effective charge of the aggregates. The sign of the effective charge has no influence on the aspect of the phase diagram. We discuss the possible reasons for this charge reversal in the light of actual theoretical approaches.

Full Text

The Full Text of this article is available as a PDF (74.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clark D. J., Kimura T. Electrostatic mechanism of chromatin folding. J Mol Biol. 1990 Feb 20;211(4):883–896. doi: 10.1016/0022-2836(90)90081-V. [DOI] [PubMed] [Google Scholar]
  2. Fletcher T. M., Hansen J. C. The nucleosomal array: structure/function relationships. Crit Rev Eukaryot Gene Expr. 1996;6(2-3):149–188. doi: 10.1615/critreveukargeneexpr.v6.i2-3.40. [DOI] [PubMed] [Google Scholar]
  3. Harp J. M., Hanson B. L., Timm D. E., Bunick G. J. Asymmetries in the nucleosome core particle at 2.5 A resolution. Acta Crystallogr D Biol Crystallogr. 2000 Dec;56(Pt 12):1513–1534. doi: 10.1107/s0907444900011847. [DOI] [PubMed] [Google Scholar]
  4. Khrapunov S. N., Dragan A. I., Sivolob A. V., Zagariya A. M. Mechanisms of stabilizing nucleosome structure. Study of dissociation of histone octamer from DNA. Biochim Biophys Acta. 1997 Mar 20;1351(1-2):213–222. doi: 10.1016/s0167-4781(96)00199-6. [DOI] [PubMed] [Google Scholar]
  5. Leforestier A., Livolant F. Liquid crystalline ordering of nucleosome core particles under macromolecular crowding conditions: evidence for a discotic columnar hexagonal phase. Biophys J. 1997 Oct;73(4):1771–1776. doi: 10.1016/S0006-3495(97)78207-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Luger K., Mäder A. W., Richmond R. K., Sargent D. F., Richmond T. J. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997 Sep 18;389(6648):251–260. doi: 10.1038/38444. [DOI] [PubMed] [Google Scholar]
  7. Manning G. S. The molecular theory of polyelectrolyte solutions with applications to the electrostatic properties of polynucleotides. Q Rev Biophys. 1978 May;11(2):179–246. doi: 10.1017/s0033583500002031. [DOI] [PubMed] [Google Scholar]
  8. Pelta J., Livolant F., Sikorav J. L. DNA aggregation induced by polyamines and cobalthexamine. J Biol Chem. 1996 Mar 8;271(10):5656–5662. doi: 10.1074/jbc.271.10.5656. [DOI] [PubMed] [Google Scholar]
  9. Raspaud E., Chaperon I., Leforestier A., Livolant F. Spermine-induced aggregation of DNA, nucleosome, and chromatin. Biophys J. 1999 Sep;77(3):1547–1555. doi: 10.1016/S0006-3495(99)77002-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Raspaud E., Olvera de la Cruz M., Sikorav J. L., Livolant F. Precipitation of DNA by polyamines: a polyelectrolyte behavior. Biophys J. 1998 Jan;74(1):381–393. doi: 10.1016/S0006-3495(98)77795-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Saminathan M., Antony T., Shirahata A., Sigal L. H., Thomas T., Thomas T. J. Ionic and structural specificity effects of natural and synthetic polyamines on the aggregation and resolubilization of single-, double-, and triple-stranded DNA. Biochemistry. 1999 Mar 23;38(12):3821–3830. doi: 10.1021/bi9825753. [DOI] [PubMed] [Google Scholar]
  12. Schwarz P. M., Felthauser A., Fletcher T. M., Hansen J. C. Reversible oligonucleosome self-association: dependence on divalent cations and core histone tail domains. Biochemistry. 1996 Apr 2;35(13):4009–4015. doi: 10.1021/bi9525684. [DOI] [PubMed] [Google Scholar]
  13. Shklovskii B. I. Screening of a macroion by multivalent ions: correlation-induced inversion of charge. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Nov;60(5 Pt B):5802–5811. doi: 10.1103/physreve.60.5802. [DOI] [PubMed] [Google Scholar]
  14. Strahl B. D., Allis C. D. The language of covalent histone modifications. Nature. 2000 Jan 6;403(6765):41–45. doi: 10.1038/47412. [DOI] [PubMed] [Google Scholar]
  15. Watanabe K., Iso K. Magnesium binding and conformational change of DNA in chromatin. Biochemistry. 1984 Mar 27;23(7):1376–1383. doi: 10.1021/bi00302a007. [DOI] [PubMed] [Google Scholar]
  16. Widom J. Physicochemical studies of the folding of the 100 A nucleosome filament into the 300 A filament. Cation dependence. J Mol Biol. 1986 Aug 5;190(3):411–424. doi: 10.1016/0022-2836(86)90012-4. [DOI] [PubMed] [Google Scholar]
  17. Widom J. Structure, dynamics, and function of chromatin in vitro. Annu Rev Biophys Biomol Struct. 1998;27:285–327. doi: 10.1146/annurev.biophys.27.1.285. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES