Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Aug;81(2):1144–1154. doi: 10.1016/S0006-3495(01)75771-2

Spectral inhomogeneity of photosystem I and its influence on excitation equilibration and trapping in the cyanobacterium Synechocystis sp. PCC6803 at 77 K.

A N Melkozernov 1, S Lin 1, R E Blankenship 1, L Valkunas 1
PMCID: PMC1301583  PMID: 11463655

Abstract

Ultrafast transient absorption spectroscopy was used to probe excitation energy transfer and trapping at 77 K in the photosystem I (PSI) core antenna from the cyanobacterium Synechocystis sp. PCC 6803. Excitation of the bulk antenna at 670 and 680 nm induces a subpicosecond energy transfer process that populates the Chl a spectral form at 685--687 nm within few transfer steps (300--400 fs). On a picosecond time scale equilibration with the longest-wavelength absorbing pigments occurs within 4-6 ps, slightly slower than at room temperature. At low temperatures in the absence of uphill energy transfer the energy equilibration processes involve low-energy shifted chlorophyll spectral forms of the bulk antenna participating in a 30--50-ps process of photochemical trapping of the excitation by P(700). These spectral forms might originate from clustered pigments in the core antenna and coupled chlorophylls of the reaction center. Part of the excitation is trapped on a pool of the longest-wavelength absorbing pigments serving as deep traps at 77 K. Transient hole burning of the ground-state absorption of the PSI with excitation at 710 and 720 nm indicates heterogeneity of the red pigment absorption band with two broad homogeneous transitions at 708 nm and 714 nm (full-width at half-maximum (fwhm) approximately 200--300 cm(-1)). The origin of these two bands is attributed to the presence of two chlorophyll dimers, while the appearance of the early time bleaching bands at 683 nm and 678 nm under excitation into the red side of the absorption spectrum (>690 nm) can be explained by borrowing of the dipole strength by the ground-state absorption of the chlorophyll a monomers from the excited-state absorption of the dimeric red pigments.

Full Text

The Full Text of this article is available as a PDF (125.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Byrdin M., Rimke I., Schlodder E., Stehlik D., Roelofs T. A. Decay kinetics and quantum yields of fluorescence in photosystem I from Synechococcus elongatus with P700 in the reduced and oxidized state: are the kinetics of excited state decay trap-limited or transfer-limited? Biophys J. 2000 Aug;79(2):992–1007. doi: 10.1016/S0006-3495(00)76353-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Croce R., Zucchelli G., Garlaschi F. M., Bassi R., Jennings R. C. Excited state equilibration in the photosystem I-light-harvesting I complex: P700 is almost isoenergetic with its antenna. Biochemistry. 1996 Jul 2;35(26):8572–8579. doi: 10.1021/bi960214m. [DOI] [PubMed] [Google Scholar]
  3. DiMagno L., Chan C. K., Jia Y., Lang M. J., Newman J. R., Mets L., Fleming G. R., Haselkorn R. Energy transfer and trapping in photosystem I reaction centers from cyanobacteria. Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2715–2719. doi: 10.1073/pnas.92.7.2715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hastings G., Hoshina S., Webber A. N., Blankenship R. E. Universality of energy and electron transfer processes in photosystem I. Biochemistry. 1995 Nov 28;34(47):15512–15522. doi: 10.1021/bi00047a017. [DOI] [PubMed] [Google Scholar]
  5. Hastings G., Kleinherenbrink F. A., Lin S., Blankenship R. E. Time-resolved fluorescence and absorption spectroscopy of photosystem I. Biochemistry. 1994 Mar 22;33(11):3185–3192. doi: 10.1021/bi00177a007. [DOI] [PubMed] [Google Scholar]
  6. Hastings G., Reed L. J., Lin S., Blankenship R. E. Excited state dynamics in photosystem I: effects of detergent and excitation wavelength. Biophys J. 1995 Nov;69(5):2044–2055. doi: 10.1016/S0006-3495(95)80074-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hecks B., Wulf K., Breton J., Leibl W., Trissl H. W. Primary charge separation in photosystem I: a two-step electrogenic charge separation connected with P700+A0- and P700+A1- formation. Biochemistry. 1994 Jul 26;33(29):8619–8624. doi: 10.1021/bi00195a001. [DOI] [PubMed] [Google Scholar]
  8. Karapetyan N. V., Holzwarth A. R., Rögner M. The photosystem I trimer of cyanobacteria: molecular organization, excitation dynamics and physiological significance. FEBS Lett. 1999 Nov 5;460(3):395–400. doi: 10.1016/s0014-5793(99)01352-6. [DOI] [PubMed] [Google Scholar]
  9. Melkozernov A. N., Lin S., Blankenship R. E. Excitation dynamics and heterogeneity of energy equilibration in the core antenna of photosystem I from the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry. 2000 Feb 15;39(6):1489–1498. doi: 10.1021/bi991644q. [DOI] [PubMed] [Google Scholar]
  10. Melkozernov A. N., Lin S., Blankenship R. E. Femtosecond transient spectroscopy and excitonic interactions in Photosystem I. J Phys Chem B. 2000 Feb 24;104(7):1651–1656. doi: 10.1021/jp993257w. [DOI] [PubMed] [Google Scholar]
  11. Pålsson L. O., Flemming C., Gobets B., van Grondelle R., Dekker J. P., Schlodder E. Energy transfer and charge separation in photosystem I: P700 oxidation upon selective excitation of the long-wavelength antenna chlorophylls of Synechococcus elongatus. Biophys J. 1998 May;74(5):2611–2622. doi: 10.1016/S0006-3495(98)77967-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Savikhin S., Xu W., Chitnis P. R., Struve W. S. Ultrafast primary processes in PS I from Synechocystis sp. PCC 6803: roles of P700 and A(0). Biophys J. 2000 Sep;79(3):1573–1586. doi: 10.1016/S0006-3495(00)76408-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Savikhin S., Xu W., Soukoulis V., Chitnis P. R., Struve W. S. Ultrafast primary processes in photosystem I of the cyanobacterium Synechocystis sp. PCC 6803. Biophys J. 1999 Jun;76(6):3278–3288. doi: 10.1016/S0006-3495(99)77480-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schlodder E., Falkenberg K., Gergeleit M., Brettel K. Temperature dependence of forward and reverse electron transfer from A1-, the reduced secondary electron acceptor in photosystem I. Biochemistry. 1998 Jun 30;37(26):9466–9476. doi: 10.1021/bi973182r. [DOI] [PubMed] [Google Scholar]
  15. Schubert W. D., Klukas O., Krauss N., Saenger W., Fromme P., Witt H. T. Photosystem I of Synechococcus elongatus at 4 A resolution: comprehensive structure analysis. J Mol Biol. 1997 Oct 10;272(5):741–769. doi: 10.1006/jmbi.1997.1269. [DOI] [PubMed] [Google Scholar]
  16. Somsen O. J., Valkunas L., van Grondelle R. A perturbed two-level model for exciton trapping in small photosynthetic systems. Biophys J. 1996 Feb;70(2):669–683. doi: 10.1016/S0006-3495(96)79607-8. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES