Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Aug;81(2):1171–1179. doi: 10.1016/S0006-3495(01)75774-8

Crystal structure of R-phycocyanin and possible energy transfer pathways in the phycobilisome.

T Jiang 1, J P Zhang 1, W R Chang 1, D C Liang 1
PMCID: PMC1301586  PMID: 11463658

Abstract

The crystal structure of R-phycocyanin from Polysiphonia urceolata (R-PC-PU) at 2.4 A is reported. The R-PC-PU crystal belongs to space group P4(3)2(1)2 with cell parameters a = 135.1 A, c = 210.0 A, and alpha = beta = gamma = 90 degrees. The structure was determined by molecular replacement. The crystallographic R-factor of the refined model is 0.189 (R(free) = 0.239). Comparison of the microenvironment of chromophore beta 155 in R-PC-PU and in C-PC from Fremyolla diphosiphon (C-PC-FD) reveals that their spectral differences may be caused by their different alpha 28 residues. In the R-PC-PU crystal structure, two (alpha beta)(3) trimers assemble face to face to form a hexamer, and two such hexamers assemble in two novel side-to-side arrangements. Possible models for the energy transfer from phycoerythrin to phycocyanin and from phycocyanin to allophycocyanin are proposed based on several phycobiliprotein crystal structures.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brejc K., Ficner R., Huber R., Steinbacher S. Isolation, crystallization, crystal structure analysis and refinement of allophycocyanin from the cyanobacterium Spirulina platensis at 2.3 A resolution. J Mol Biol. 1995 Jun 2;249(2):424–440. doi: 10.1006/jmbi.1995.0307. [DOI] [PubMed] [Google Scholar]
  2. Bryant D. A., de Lorimier R., Guglielmi G., Stevens S. E., Jr Structural and compositional analyses of the phycobilisomes of Synechococcus sp. PCC 7002. Analyses of the wild-type strain and a phycocyanin-less mutant constructed by interposon mutagenesis. Arch Microbiol. 1990;153(6):550–560. doi: 10.1007/BF00245264. [DOI] [PubMed] [Google Scholar]
  3. Ducret A., Sidler W., Frank G., Zuber H. The complete amino acid sequence of R-phycocyanin-I alpha and beta subunits from the red alga Porphyridium cruentum. Structural and phylogenetic relationships of the phycocyanins within the phycobiliprotein families. Eur J Biochem. 1994 Apr 1;221(1):563–580. doi: 10.1111/j.1432-1033.1994.tb18769.x. [DOI] [PubMed] [Google Scholar]
  4. Duerring M., Schmidt G. B., Huber R. Isolation, crystallization, crystal structure analysis and refinement of constitutive C-phycocyanin from the chromatically adapting cyanobacterium Fremyella diplosiphon at 1.66 A resolution. J Mol Biol. 1991 Feb 5;217(3):577–592. doi: 10.1016/0022-2836(91)90759-y. [DOI] [PubMed] [Google Scholar]
  5. Ficner R., Huber R. Refined crystal structure of phycoerythrin from Porphyridium cruentum at 0.23-nm resolution and localization of the gamma subunit. Eur J Biochem. 1993 Nov 15;218(1):103–106. doi: 10.1111/j.1432-1033.1993.tb18356.x. [DOI] [PubMed] [Google Scholar]
  6. Ficner R., Lobeck K., Schmidt G., Huber R. Isolation, crystallization, crystal structure analysis and refinement of B-phycoerythrin from the red alga Porphyridium sordidum at 2.2 A resolution. J Mol Biol. 1992 Dec 5;228(3):935–950. doi: 10.1016/0022-2836(92)90876-l. [DOI] [PubMed] [Google Scholar]
  7. Glauser M., Bryant D. A., Frank G., Wehrli E., Rusconi S. S., Sidler W., Zuber H. Phycobilisome structure in the cyanobacteria Mastigocladus laminosus and Anabaena sp. PCC 7120. Eur J Biochem. 1992 May 1;205(3):907–915. doi: 10.1111/j.1432-1033.1992.tb16857.x. [DOI] [PubMed] [Google Scholar]
  8. Glazer A. N. Light guides. Directional energy transfer in a photosynthetic antenna. J Biol Chem. 1989 Jan 5;264(1):1–4. [PubMed] [Google Scholar]
  9. Glazer A. N. Light harvesting by phycobilisomes. Annu Rev Biophys Biophys Chem. 1985;14:47–77. doi: 10.1146/annurev.bb.14.060185.000403. [DOI] [PubMed] [Google Scholar]
  10. Jiang T., Zhang J., Liang D. Structure and function of chromophores in R-Phycoerythrin at 1.9 A resolution. Proteins. 1999 Feb 1;34(2):224–231. [PubMed] [Google Scholar]
  11. Liu J. Y., Jiang T., Zhang J. P., Liang D. C. Crystal structure of allophycocyanin from red algae Porphyra yezoensis at 2.2-A resolution. J Biol Chem. 1999 Jun 11;274(24):16945–16952. doi: 10.1074/jbc.274.24.16945. [DOI] [PubMed] [Google Scholar]
  12. Ong L. J., Glazer A. N. R-phycocyanin II, a new phycocyanin occurring in marine Synechococcus species. Identification of the terminal energy acceptor bilin in phycocyanins. J Biol Chem. 1987 May 5;262(13):6323–6327. [PubMed] [Google Scholar]
  13. Reuter W., Wiegand G., Huber R., Than M. E. Structural analysis at 2.2 A of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP.LC7.8, from phycobilisomes of Mastigocladus laminosus. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1363–1368. doi: 10.1073/pnas.96.4.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ritter S., Hiller R. G., Wrench P. M., Welte W., Diederichs K. Crystal structure of a phycourobilin-containing phycoerythrin at 1.90-A resolution. J Struct Biol. 1999 Jun 15;126(2):86–97. doi: 10.1006/jsbi.1999.4106. [DOI] [PubMed] [Google Scholar]
  15. Schirmer T., Bode W., Huber R., Sidler W., Zuber H. X-ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium Mastigocladus laminosus and its resemblance to globin structures. J Mol Biol. 1985 Jul 20;184(2):257–277. doi: 10.1016/0022-2836(85)90379-1. [DOI] [PubMed] [Google Scholar]
  16. Schirmer T., Huber R., Schneider M., Bode W., Miller M., Hackert M. L. Crystal structure analysis and refinement at 2.5 A of hexameric C-phycocyanin from the cyanobacterium Agmenellum quadruplicatum. The molecular model and its implications for light-harvesting. J Mol Biol. 1986 Apr 20;188(4):651–676. doi: 10.1016/s0022-2836(86)80013-4. [DOI] [PubMed] [Google Scholar]
  17. Stec B., Troxler R. F., Teeter M. M. Crystal structure of C-phycocyanin from Cyanidium caldarium provides a new perspective on phycobilisome assembly. Biophys J. 1999 Jun;76(6):2912–2921. doi: 10.1016/S0006-3495(99)77446-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Suter G. W., Holzwarth A. R. A kinetic model for the energy transfer in phycobilisomes. Biophys J. 1987 Nov;52(5):673–683. doi: 10.1016/S0006-3495(87)83262-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Wilson W. H., Newman J., Mann N. H., Carr N. G. Cloning and sequence analysis of the phycocyanin genes of the marine cyanobacterium Synechococcus sp. WH7803. Plant Mol Biol. 1991 Oct;17(4):931–933. doi: 10.1007/BF00037076. [DOI] [PubMed] [Google Scholar]
  20. de Lorimier R., Wilbanks S. M., Glazer A. N. Genes of the R-phycocyanin II locus of marine Synechococcus spp., and comparison of protein-chromophore interactions in phycocyanins differing in bilin composition. Plant Mol Biol. 1993 Jan;21(2):225–237. doi: 10.1007/BF00019939. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES