Abstract
Nonlinear least squares fitting was used to assign rate constants for the three-barrier, two-site, double-occupancy, single-filing kinetic model for previously reported current-voltage relations of (5F-Indole)Trp(13) gramicidin A and gramicidin A channels (, 75:2830-2844). By judicious coupling of parameters, it was possible to reduce the parameter space from 64 parameters to 24, and a reasonable fit consistent with other experimental data was obtained. The main features of the fit were that fluorination increased the rate constant for translocation by a factor of 2.33, consistent with a free energy change in the translocation barrier of -0.50 kcal/mol, and increased first-ion binding affinity by a factor of 1.13, primarily by decreasing the first-ion exit rate constant. The translocation rate constant was 5.62 times slower in diphytanoyl phosphatidylcholine (DPhPC) bilayers than in monoolein (GMO) bilayers (coupled for the four combinations of peptide and salt), suggesting a 44.2-mV difference in the projection of the interfacial dipole into the channel. Thus fluorination caused increased currents in DPhPC bilayers, where a high interfacial dipole potential makes translocation more rate limiting because the translocation barrier was reduced, and decreased currents in GMO bilayers, where ion exit or entry is rate limiting because these barriers were increased.
Full Text
The Full Text of this article is available as a PDF (129.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Andersen O. S. Graphic representation of the results of kinetic analyses. J Gen Physiol. 1999 Oct;114(4):589–590. doi: 10.1085/jgp.114.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersen O. S. Ion movement through gramicidin A channels. Interfacial polarization effects on single-channel current measurements. Biophys J. 1983 Feb;41(2):135–146. doi: 10.1016/S0006-3495(83)84415-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersen O. S. Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. Biophys J. 1983 Feb;41(2):119–133. doi: 10.1016/S0006-3495(83)84414-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersen O. S. Ion movement through gramicidin A channels. Studies on the diffusion-controlled association step. Biophys J. 1983 Feb;41(2):147–165. doi: 10.1016/S0006-3495(83)84416-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson D. G., Shirts R. B., Cross T. A., Busath D. D. Noncontact dipole effects on channel permeation. V. Computed potentials for fluorinated gramicidin. Biophys J. 2001 Sep;81(3):1255–1264. doi: 10.1016/S0006-3495(01)75783-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Becker M. D., Koeppe R. E., 2nd, Andersen O. S. Amino acid substitutions and ion channel function. Model-dependent conclusions. Biophys J. 1992 Apr;62(1):25–27. doi: 10.1016/S0006-3495(92)81767-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Busath D. D. The use of physical methods in determining gramicidin channel structure and function. Annu Rev Physiol. 1993;55:473–501. doi: 10.1146/annurev.ph.55.030193.002353. [DOI] [PubMed] [Google Scholar]
- Busath D. D., Thulin C. D., Hendershot R. W., Phillips L. R., Maughan P., Cole C. D., Bingham N. C., Morrison S., Baird L. C., Hendershot R. J. Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels. Biophys J. 1998 Dec;75(6):2830–2844. doi: 10.1016/S0006-3495(98)77726-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Busath D., Szabo G. Permeation characteristics of gramicidin conformers. Biophys J. 1988 May;53(5):697–707. doi: 10.1016/S0006-3495(88)83151-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper K. E., Gates P. Y., Eisenberg R. S. Diffusion theory and discrete rate constants in ion permeation. J Membr Biol. 1988 Dec;106(2):95–105. doi: 10.1007/BF01871391. [DOI] [PubMed] [Google Scholar]
- Cotten M., Tian C., Busath D. D., Shirts R. B., Cross T. A. Modulating dipoles for structure-function correlations in the gramicidin A channel. Biochemistry. 1999 Jul 20;38(29):9185–9197. doi: 10.1021/bi982981m. [DOI] [PubMed] [Google Scholar]
- Dorigo A. E., Anderson D. G., Busath D. D. Noncontact dipole effects on channel permeation. II. Trp conformations and dipole potentials in gramicidin A. Biophys J. 1999 Apr;76(4):1897–1908. doi: 10.1016/S0006-3495(99)77348-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hainsworth A. H., Hladky S. B. Gramicidin-mediated currents at very low permeant ion concentrations. Biophys J. 1987 Jul;52(1):109–113. doi: 10.1016/S0006-3495(87)83194-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hille B., Schwarz W. Potassium channels as multi-ion single-file pores. J Gen Physiol. 1978 Oct;72(4):409–442. doi: 10.1085/jgp.72.4.409. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinton J. F., Fernandez J. Q., Shungu D. C., Whaley W. L., Koeppe R. E., 2nd, Millett F. S. TI-205 nuclear magnetic resonance determination of the thermodynamic parameters for the binding of monovalent cations to gramicidins A and C. Biophys J. 1988 Sep;54(3):527–533. doi: 10.1016/S0006-3495(88)82985-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hladky S. B. Ion currents through pores. The roles of diffusion and external access steps in determining the currents through narrow pores. Biophys J. 1984 Sep;46(3):293–297. doi: 10.1016/S0006-3495(84)84025-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jing N., Prasad K. U., Urry D. W. The determination of binding constants of micellar-packaged gramicidin A by 13C-and 23Na-NMR. Biochim Biophys Acta. 1995 Aug 23;1238(1):1–11. doi: 10.1016/0005-2736(95)00095-k. [DOI] [PubMed] [Google Scholar]
- Jordan P. C. Electrostatic modeling of ion pores. II. Effects attributable to the membrane dipole potential. Biophys J. 1983 Feb;41(2):189–195. doi: 10.1016/S0006-3495(83)84419-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levitt D. G. Comparison of Nernst-Planck and reaction rate models for multiply occupied channels. Biophys J. 1982 Mar;37(3):575–587. [PMC free article] [PubMed] [Google Scholar]
- Urban B. W., Hladky S. B. Ion transport in the simplest single file pore. Biochim Biophys Acta. 1979 Jul 5;554(2):410–429. doi: 10.1016/0005-2736(79)90381-x. [DOI] [PubMed] [Google Scholar]
- Wang K. W., Tripathi S., Hladky S. B. Ion binding constants for gramicidin A obtained from water permeability measurements. J Membr Biol. 1995 Feb;143(3):247–257. doi: 10.1007/BF00233453. [DOI] [PubMed] [Google Scholar]
