Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Sep;81(3):1255–1264. doi: 10.1016/S0006-3495(01)75783-9

Noncontact dipole effects on channel permeation. V. Computed potentials for fluorinated gramicidin.

D G Anderson 1, R B Shirts 1, T A Cross 1, D D Busath 1
PMCID: PMC1301607  PMID: 11509342

Abstract

Experimental and theoretical calculations indicate that the dipole moment of the four Trp side chains in gramicidin A (gA) channels modify channel conductance through long-range electrostatic interactions. Electrostatic ion/side-chain interaction energies along the channel were computed with CHARMM using ab initio atom charges for native and 4-, 5-, or 6-fluorinated Trp side chains. The bulk water reaction to the polar side chains was included using the method of images as implemented by, and channel waters in idealized structures were included. Ion/Trp interaction energies were approximately -0.6 kcal/mol throughout the channel for all four of the native Trp pairs. Channel waters produced a modest reduction in the magnitude of interactions, essentially offsetting images representing the bulk water outside the channel. The effects of side-chain fluorination depended on ring position and, to a lesser extent, residue number. Compared with native Trp, 5-fluorination reduces the translocation barrier with minor effects on the exit barrier. In contrast, 6-fluorination primarily reduces exit barrier. 4-Fluorination produces a more complex double-well energy profile. Effects of measured side-chain movements resulting from fluorination or change in lipid bilayer were negligible whereas thermal side chain librations cause large effects, especially in the region of the ion-binding sites.

Full Text

The Full Text of this article is available as a PDF (143.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersen O. S. Ion movement through gramicidin A channels. Single-channel measurements at very high potentials. Biophys J. 1983 Feb;41(2):119–133. doi: 10.1016/S0006-3495(83)84414-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Becker M. D., Greathouse D. V., Koeppe R. E., 2nd, Andersen O. S. Amino acid sequence modulation of gramicidin channel function: effects of tryptophan-to-phenylalanine substitutions on the single-channel conductance and duration. Biochemistry. 1991 Sep 10;30(36):8830–8839. doi: 10.1021/bi00100a015. [DOI] [PubMed] [Google Scholar]
  3. Busath D. D. The use of physical methods in determining gramicidin channel structure and function. Annu Rev Physiol. 1993;55:473–501. doi: 10.1146/annurev.ph.55.030193.002353. [DOI] [PubMed] [Google Scholar]
  4. Busath D. D., Thulin C. D., Hendershot R. W., Phillips L. R., Maughan P., Cole C. D., Bingham N. C., Morrison S., Baird L. C., Hendershot R. J. Noncontact dipole effects on channel permeation. I. Experiments with (5F-indole)Trp13 gramicidin A channels. Biophys J. 1998 Dec;75(6):2830–2844. doi: 10.1016/S0006-3495(98)77726-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cifu A. S., Koeppe R. E., 2nd, Andersen O. S. On the supramolecular organization of gramicidin channels. The elementary conducting unit is a dimer. Biophys J. 1992 Jan;61(1):189–203. doi: 10.1016/S0006-3495(92)81826-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cotten M., Tian C., Busath D. D., Shirts R. B., Cross T. A. Modulating dipoles for structure-function correlations in the gramicidin A channel. Biochemistry. 1999 Jul 20;38(29):9185–9197. doi: 10.1021/bi982981m. [DOI] [PubMed] [Google Scholar]
  7. De Wall S. L., Meadows E. S., Barbour L. J., Gokel G. W. Synthetic receptors as models for alkali metal cation-pi binding sites in proteins. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6271–6276. doi: 10.1073/pnas.97.12.6271. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dorigo A. E., Anderson D. G., Busath D. D. Noncontact dipole effects on channel permeation. II. Trp conformations and dipole potentials in gramicidin A. Biophys J. 1999 Apr;76(4):1897–1908. doi: 10.1016/S0006-3495(99)77348-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fonseca V., Daumas P., Ranjalahy-Rasoloarijao L., Heitz F., Lazaro R., Trudelle Y., Andersen O. S. Gramicidin channels that have no tryptophan residues. Biochemistry. 1992 Jun 16;31(23):5340–5350. doi: 10.1021/bi00138a014. [DOI] [PubMed] [Google Scholar]
  10. Hao Y., Pear M. R., Busath D. D. Molecular dynamics study of free energy profiles for organic cations in gramicidin A channels. Biophys J. 1997 Oct;73(4):1699–1716. doi: 10.1016/S0006-3495(97)78202-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Heitz F., Gavach C., Spach G., Trudelle Y. Analysis of the ion transfer through the channel of 9,11,13,15-phenylalanylgramicidin A. Biophys Chem. 1986 Jul;24(2):143–148. doi: 10.1016/0301-4622(86)80007-2. [DOI] [PubMed] [Google Scholar]
  12. Hu W., Cross T. A. Tryptophan hydrogen bonding and electric dipole moments: functional roles in the gramicidin channel and implications for membrane proteins. Biochemistry. 1995 Oct 31;34(43):14147–14155. doi: 10.1021/bi00043a020. [DOI] [PubMed] [Google Scholar]
  13. Hu W., Lazo N. D., Cross T. A. Tryptophan dynamics and structural refinement in a lipid bilayer environment: solid state NMR of the gramicidin channel. Biochemistry. 1995 Oct 31;34(43):14138–14146. doi: 10.1021/bi00043a019. [DOI] [PubMed] [Google Scholar]
  14. Hu W., Lee K. C., Cross T. A. Tryptophans in membrane proteins: indole ring orientations and functional implications in the gramicidin channel. Biochemistry. 1993 Jul 13;32(27):7035–7047. doi: 10.1021/bi00078a032. [DOI] [PubMed] [Google Scholar]
  15. Jakobsson E., Chiu S. W. Stochastic theory of ion movement in channels with single-ion occupancy. Application to sodium permeation of gramicidin channels. Biophys J. 1987 Jul;52(1):33–45. doi: 10.1016/S0006-3495(87)83186-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ketchem R., Roux B., Cross T. High-resolution polypeptide structure in a lamellar phase lipid environment from solid state NMR derived orientational constraints. Structure. 1997 Dec 15;5(12):1655–1669. doi: 10.1016/s0969-2126(97)00312-2. [DOI] [PubMed] [Google Scholar]
  17. Killian J. A. Gramicidin and gramicidin-lipid interactions. Biochim Biophys Acta. 1992 Dec 11;1113(3-4):391–425. doi: 10.1016/0304-4157(92)90008-x. [DOI] [PubMed] [Google Scholar]
  18. Kim K. S., Vercauteren D. P., Welti M., Chin S., Clementi E. Interaction of K+ ion with the solvated gramicidin A transmembrane channel. Biophys J. 1985 Mar;47(3):327–335. doi: 10.1016/S0006-3495(85)83923-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Koeppe R. E., 2nd, Killian J. A., Greathouse D. V. Orientations of the tryptophan 9 and 11 side chains of the gramicidin channel based on deuterium nuclear magnetic resonance spectroscopy. Biophys J. 1994 Jan;66(1):14–24. doi: 10.1016/S0006-3495(94)80748-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Koeppe R. E., 2nd, Killian J. A., Vogt T. C., de Kruijff B., Taylor M. J., Mattice G. L., Greathouse D. V. Palmitoylation-induced conformational changes of specific side chains in the gramicidin transmembrane channel. Biochemistry. 1995 Jul 25;34(29):9299–9306. doi: 10.1021/bi00029a004. [DOI] [PubMed] [Google Scholar]
  21. Koeppe R. E., 2nd, Mazet J. L., Andersen O. S. Distinction between dipolar and inductive effects in modulating the conductance of gramicidin channels. Biochemistry. 1990 Jan 16;29(2):512–520. doi: 10.1021/bi00454a027. [DOI] [PubMed] [Google Scholar]
  22. Koeppe R. E., 2nd, Vogt T. C., Greathouse D. V., Killian J. A., de Kruijff B. Conformation of the acylation site of palmitoylgramicidin in lipid bilayers of dimyristoylphosphatidylcholine. Biochemistry. 1996 Mar 19;35(11):3641–3648. doi: 10.1021/bi952046o. [DOI] [PubMed] [Google Scholar]
  23. Olah G. A., Huang H. W., Liu W. H., Wu Y. L. Location of ion-binding sites in the gramicidin channel by X-ray diffraction. J Mol Biol. 1991 Apr 20;218(4):847–858. doi: 10.1016/0022-2836(91)90272-8. [DOI] [PubMed] [Google Scholar]
  24. Phillips L. R., Cole C. D., Hendershot R. J., Cotten M., Cross T. A., Busath D. D. Noncontact dipole effects on channel permeation. III. Anomalous proton conductance effects in gramicidin. Biophys J. 2008 Nov 21;77(5):2492–2501. doi: 10.1016/S0006-3495(99)77085-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Roux B., Prod'hom B., Karplus M. Ion transport in the gramicidin channel: molecular dynamics study of single and double occupancy. Biophys J. 1995 Mar;68(3):876–892. doi: 10.1016/S0006-3495(95)80264-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Russell E. W., Weiss L. B., Navetta F. I., Koeppe R. E., 2nd, Andersen O. S. Single-channel studies on linear gramicidins with altered amino acid side chains. Effects of altering the polarity of the side chain at position 1 in gramicidin A. Biophys J. 1986 Mar;49(3):673–686. doi: 10.1016/S0006-3495(86)83694-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sancho M., Martínez G. Electrostatic modeling of dipole-ion interactions in gramicidinlike channels. Biophys J. 1991 Jul;60(1):81–88. doi: 10.1016/S0006-3495(91)82032-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Thompson N., Thompson G., Cole C. D., Cotten M., Cross T. A., Busath D. D. Noncontact dipole effects on channel permeation. IV. Kinetic model of 5F-Trp(13) gramicidin A currents. Biophys J. 2001 Sep;81(3):1245–1254. doi: 10.1016/S0006-3495(01)75782-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tian F., Cross T. A. Cation transport: an example of structural based selectivity. J Mol Biol. 1999 Feb 5;285(5):1993–2003. doi: 10.1006/jmbi.1998.2434. [DOI] [PubMed] [Google Scholar]
  30. Tian F., Lee K. C., Hu W., Cross T. A. Monovalent cation transport: lack of structural deformation upon cation binding. Biochemistry. 1996 Sep 17;35(37):11959–11966. doi: 10.1021/bi961170k. [DOI] [PubMed] [Google Scholar]
  31. Urry D. W., Prasad K. U., Trapane T. L. Location of monovalent cation binding sites in the gramicidin channel. Proc Natl Acad Sci U S A. 1982 Jan;79(2):390–394. doi: 10.1073/pnas.79.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Woolf T. B., Roux B. The binding site of sodium in the gramicidin A channel: comparison of molecular dynamics with solid-state NMR data. Biophys J. 1997 May;72(5):1930–1945. doi: 10.1016/S0006-3495(97)78839-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Woolley G. A., Wallace B. A. Model ion channels: gramicidin and alamethicin. J Membr Biol. 1992 Aug;129(2):109–136. doi: 10.1007/BF00219508. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES