Abstract
Conventional analyses of fluorescence lifetime measurements resolve the fluorescence decay profile in terms of discrete exponential components with distinct lifetimes. In complex, heterogeneous biological samples such as tissue, multi-exponential decay functions can appear to provide a better fit to fluorescence decay data than the assumption of a mono-exponential decay, but the assumption of multiple discrete components is essentially arbitrary and is often erroneous. Moreover, interactions, both between fluorophores and with their environment, can result in complex fluorescence decay profiles that represent a continuous distribution of lifetimes. Such continuous distributions have been reported for tryptophan, which is one of the main fluorophores in tissue. This situation is better represented by the stretched-exponential function (StrEF). In this work, we have applied, for the first time to our knowledge, the StrEF to time-domain whole-field fluorescence lifetime imaging (FLIM), yielding both excellent tissue contrast and goodness of fit using data from rat tissue. We note that for many biological samples for which there is no a priori knowledge of multiple discrete exponential fluorescence decay profiles, the StrEF is likely to provide a truer representation of the underlying fluorescence dynamics. Furthermore, fitting to a StrEF significantly decreases the required processing time, compared with a multi-exponential component fit and typically provides improved contrast and signal/noise in the resulting FLIM images. In addition, the stretched-exponential decay model can provide a direct measure of the heterogeneity of the sample, and the resulting heterogeneity map can reveal subtle tissue differences that other models fail to show.
Full Text
The Full Text of this article is available as a PDF (467.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alcala J. R., Gratton E., Prendergast F. G. Fluorescence lifetime distributions in proteins. Biophys J. 1987 Apr;51(4):597–604. doi: 10.1016/S0006-3495(87)83384-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alvarez F, Alegra A, Colmenero J. Relationship between the time-domain Kohlrausch-Williams-Watts and frequency-domain Havriliak-Negami relaxation functions. Phys Rev B Condens Matter. 1991 Oct 1;44(14):7306–7312. doi: 10.1103/physrevb.44.7306. [DOI] [PubMed] [Google Scholar]
- Bambot S. B., Rao G., Romauld M., Carter G. M., Sipior J., Terpetchnig E., Lakowicz J. R. Sensing oxygen through skin using a red diode laser and fluorescence lifetimes. Biosens Bioelectron. 1995 Summer;10(6-7):643–652. doi: 10.1016/0956-5663(95)96941-q. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baraga J. J., Rava R. P., Fitzmaurice M., Tong L. L., Taroni P., Kittrell C., Feld M. S. Characterization of the fluorescent morphological structures in human arterial wall using ultraviolet-excited microspectrofluorimetry. Atherosclerosis. 1991 May;88(1):1–14. doi: 10.1016/0021-9150(91)90251-w. [DOI] [PubMed] [Google Scholar]
- Lakowicz J. R., Szmacinski H., Nowaczyk K., Berndt K. W., Johnson M. Fluorescence lifetime imaging. Anal Biochem. 1992 May 1;202(2):316–330. doi: 10.1016/0003-2697(92)90112-k. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maliwal B. P., Kuśba J., Lakowicz J. R. Fluorescence energy transfer in one dimension: frequency-domain fluorescence study of DNA-fluorophore complexes. Biopolymers. 1995 Feb;35(2):245–255. doi: 10.1002/bip.360350213. [DOI] [PubMed] [Google Scholar]
- Pongor S., Ulrich P. C., Bencsath F. A., Cerami A. Aging of proteins: isolation and identification of a fluorescent chromophore from the reaction of polypeptides with glucose. Proc Natl Acad Sci U S A. 1984 May;81(9):2684–2688. doi: 10.1073/pnas.81.9.2684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders R., Draaijer A., Gerritsen H. C., Houpt P. M., Levine Y. K. Quantitative pH imaging in cells using confocal fluorescence lifetime imaging microscopy. Anal Biochem. 1995 May 20;227(2):302–308. doi: 10.1006/abio.1995.1285. [DOI] [PubMed] [Google Scholar]
- Szmacinski H., Lakowicz J. R. Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry. Anal Chem. 1993 Jul 1;65(13):1668–1674. doi: 10.1021/ac00061a007. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uskova M. A., Borst J. W., Hink M. A., van Hoek A., Schots A., Klyachko N. L., Visser A. J. Fluorescence dynamics of green fluorescent protein in AOT reversed micelles. Biophys Chem. 2000 Sep 15;87(1):73–84. doi: 10.1016/s0301-4622(00)00184-8. [DOI] [PubMed] [Google Scholar]
- Vix A., Lami H. Protein fluorescence decay: discrete components or distribution of lifetimes? Really no way out of the dilemma? Biophys J. 1995 Mar;68(3):1145–1151. doi: 10.1016/S0006-3495(95)80290-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeng H., MacAulay C., Palcic B., McLean D. I. A computerized autofluorescence and diffuse reflectance spectroanalyser system for in vivo skin studies. Phys Med Biol. 1993 Feb;38(2):231–240. doi: 10.1088/0031-9155/38/2/002. [DOI] [PubMed] [Google Scholar]