Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Sep;81(3):1275–1284. doi: 10.1016/S0006-3495(01)75785-2

Evaluation of site-directed spin labeling for characterizing protein-ligand complexes using simulated restraints.

K L Constantine 1
PMCID: PMC1301609  PMID: 11509344

Abstract

Simulation studies have been performed to evaluate the utility of site-directed spin labeling for determining the structures of protein-ligand complexes, given a known protein structure. Two protein-ligand complexes were used as model systems for these studies: a 1.9-A-resolution x-ray structure of a dihydrofolate reductase mutant complexed with methotrexate, and a 1.5-A-resolution x-ray structure of the V-Src tyrosine kinase SH2 domain complexed with a five-residue phosphopeptide. Nitroxide spin labels were modeled at five dihydrofolate reductase residue positions and at four SH2 domain residue positions. For both systems, after energy minimization, conformational ensembles of the spin-labeled residues were generated by simulated annealing while holding the remainder of the protein-ligand complex fixed. Effective distances, simulating those that could be obtained from (1)H-NMR relaxation measurements, were calculated between ligand protons and the spin labels. These were converted to restraints with several different levels of precision. Restrained simulated annealing calculations were then performed with the aim of reproducing target ligand-binding modes. The effects of incorporating a few supplementary short-range (< or =5.0 A) distance restraints were also examined. For the dihydrofolate reductase-methotrexate complex, the ligand-binding mode was reproduced reasonably well using relatively tight spin-label restraints, but methotrexate was poorly localized using loose spin-label restraints. Short-range and spin-label restraints proved to be complementary. For the SH2 domain-phosphopeptide complex without the short-range restraints, the peptide did not localize to the correct depth in the binding groove; nevertheless, the orientation and internal conformation of the peptide was reproduced moderately well. Use of the spin-label restraints in conjunction with the short-range restraints resulted in relatively well defined structural ensembles. These results indicate that restraints derived from site-directed spin labeling can contribute significantly to defining the orientations and conformations of bound ligands. Accurate ligand localization appears to require either a few supplementary short-range distance restraints, or relatively tight spin-label restraints, with at least one spin label positioned so that some of the restraints draw the ligand into the binding pocket in the latter case.

Full Text

The Full Text of this article is available as a PDF (296.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anglister J., Frey T., McConnell H. M. Distances of tyrosine residues from a spin-label hapten in the combining site of a specific monoclonal antibody. Biochemistry. 1984 Oct 23;23(22):5372–5375. doi: 10.1021/bi00317a041. [DOI] [PubMed] [Google Scholar]
  2. Battiste J. L., Wagner G. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry. 2000 May 9;39(18):5355–5365. doi: 10.1021/bi000060h. [DOI] [PubMed] [Google Scholar]
  3. Brown K. A., Howell E. E., Kraut J. Long-range structural effects in a second-site revertant of a mutant dihydrofolate reductase. Proc Natl Acad Sci U S A. 1993 Dec 15;90(24):11753–11756. doi: 10.1073/pnas.90.24.11753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Campbell A. P., Sykes B. D. The two-dimensional transferred nuclear Overhauser effect: theory and practice. Annu Rev Biophys Biomol Struct. 1993;22:99–122. doi: 10.1146/annurev.bb.22.060193.000531. [DOI] [PubMed] [Google Scholar]
  5. Fesik S. W. NMR studies of molecular complexes as a tool in drug design. J Med Chem. 1991 Oct;34(10):2937–2945. doi: 10.1021/jm00114a001. [DOI] [PubMed] [Google Scholar]
  6. Frederick A. F., Kay L. E., Prestegard J. H. Location of divalent ion sites in acyl carrier protein using relaxation perturbed 2D NMR. FEBS Lett. 1988 Sep 26;238(1):43–48. doi: 10.1016/0014-5793(88)80222-9. [DOI] [PubMed] [Google Scholar]
  7. Gaponenko V., Howarth J. W., Columbus L., Gasmi-Seabrook G., Yuan J., Hubbell W. L., Rosevear P. R. Protein global fold determination using site-directed spin and isotope labeling. Protein Sci. 2000 Feb;9(2):302–309. doi: 10.1110/ps.9.2.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gardner K. H., Kay L. E. The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct. 1998;27:357–406. doi: 10.1146/annurev.biophys.27.1.357. [DOI] [PubMed] [Google Scholar]
  9. Gillespie J. R., Shortle D. Characterization of long-range structure in the denatured state of staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide spin labels. J Mol Biol. 1997 Apr 25;268(1):158–169. doi: 10.1006/jmbi.1997.0954. [DOI] [PubMed] [Google Scholar]
  10. Gillespie J. R., Shortle D. Characterization of long-range structure in the denatured state of staphylococcal nuclease. II. Distance restraints from paramagnetic relaxation and calculation of an ensemble of structures. J Mol Biol. 1997 Apr 25;268(1):170–184. doi: 10.1006/jmbi.1997.0953. [DOI] [PubMed] [Google Scholar]
  11. Goto N. K., Gardner K. H., Mueller G. A., Willis R. C., Kay L. E. A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR. 1999 Apr;13(4):369–374. doi: 10.1023/a:1008393201236. [DOI] [PubMed] [Google Scholar]
  12. Hubbell W. L., Gross A., Langen R., Lietzow M. A. Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol. 1998 Oct;8(5):649–656. doi: 10.1016/s0959-440x(98)80158-9. [DOI] [PubMed] [Google Scholar]
  13. Jacob J., Baker B., Bryant R. G., Cafiso D. S. Distance estimates from paramagnetic enhancements of nuclear relaxation in linear and flexible model peptides. Biophys J. 1999 Aug;77(2):1086–1092. doi: 10.1016/S0006-3495(99)76958-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Johnson P. E., Brun E., MacKenzie L. F., Withers S. G., McIntosh L. P. The cellulose-binding domains from Cellulomonas fimi beta-1, 4-glucanase CenC bind nitroxide spin-labeled cellooligosaccharides in multiple orientations. J Mol Biol. 1999 Apr 2;287(3):609–625. doi: 10.1006/jmbi.1999.2627. [DOI] [PubMed] [Google Scholar]
  15. Kosen P. A. Spin labeling of proteins. Methods Enzymol. 1989;177:86–121. doi: 10.1016/0076-6879(89)77007-5. [DOI] [PubMed] [Google Scholar]
  16. Langen R., Oh K. J., Cascio D., Hubbell W. L. Crystal structures of spin labeled T4 lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. Biochemistry. 2000 Jul 25;39(29):8396–8405. doi: 10.1021/bi000604f. [DOI] [PubMed] [Google Scholar]
  17. Lee L., Sykes B. D. Nuclear magnetic resonance determination of metal-protn distances in the EF site of carp parvalbumin using the susceptibility contribution to the line broadening of lanthanide-shifted resonances. Biochemistry. 1980 Jul 8;19(14):3208–3214. doi: 10.1021/bi00555a017. [DOI] [PubMed] [Google Scholar]
  18. Mchaourab H. S., Kálai T., Hideg K., Hubbell W. L. Motion of spin-labeled side chains in T4 lysozyme: effect of side chain structure. Biochemistry. 1999 Mar 9;38(10):2947–2955. doi: 10.1021/bi9826310. [DOI] [PubMed] [Google Scholar]
  19. Mchaourab H. S., Lietzow M. A., Hideg K., Hubbell W. L. Motion of spin-labeled side chains in T4 lysozyme. Correlation with protein structure and dynamics. Biochemistry. 1996 Jun 18;35(24):7692–7704. doi: 10.1021/bi960482k. [DOI] [PubMed] [Google Scholar]
  20. Mueller G. A., Choy W. Y., Yang D., Forman-Kay J. D., Venters R. A., Kay L. E. Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. J Mol Biol. 2000 Jun 30;300(1):197–212. doi: 10.1006/jmbi.2000.3842. [DOI] [PubMed] [Google Scholar]
  21. Musci G., Koga K., Berliner L. J. Methionine-90-spin-labeled bovine alpha-lactalbumin: electron spin resonance and NMR distance measurements. Biochemistry. 1988 Feb 23;27(4):1260–1265. doi: 10.1021/bi00404a028. [DOI] [PubMed] [Google Scholar]
  22. Nilges M., Gronenborn A. M., Brünger A. T., Clore G. M. Determination of three-dimensional structures of proteins by simulated annealing with interproton distance restraints. Application to crambin, potato carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. Protein Eng. 1988 Apr;2(1):27–38. doi: 10.1093/protein/2.1.27. [DOI] [PubMed] [Google Scholar]
  23. Otting G., Wüthrich K. Heteronuclear filters in two-dimensional [1H,1H]-NMR spectroscopy: combined use with isotope labelling for studies of macromolecular conformation and intermolecular interactions. Q Rev Biophys. 1990 Feb;23(1):39–96. doi: 10.1017/s0033583500005412. [DOI] [PubMed] [Google Scholar]
  24. Ray B. D., Rao B. D. 31P NMR studies of enzyme-bound substrate complexes of yeast 3-phosphoglycerate kinase. 2. Structure measurements using paramagnetic relaxation effects of Mn(II) and Co(II). Biochemistry. 1988 Jul 26;27(15):5579–5585. doi: 10.1021/bi00415a028. [DOI] [PubMed] [Google Scholar]
  25. Schmidt P. G., Kuntz I. D. Distance measurements in spin-labeled lysozyme. Biochemistry. 1984 Aug 28;23(18):4261–4266. doi: 10.1021/bi00313a038. [DOI] [PubMed] [Google Scholar]
  26. Waksman G., Kominos D., Robertson S. C., Pant N., Baltimore D., Birge R. B., Cowburn D., Hanafusa H., Mayer B. J., Overduin M. Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides. Nature. 1992 Aug 20;358(6388):646–653. doi: 10.1038/358646a0. [DOI] [PubMed] [Google Scholar]
  27. Wider G., Wüthrich K. NMR spectroscopy of large molecules and multimolecular assemblies in solution. Curr Opin Struct Biol. 1999 Oct;9(5):594–601. doi: 10.1016/s0959-440x(99)00011-1. [DOI] [PubMed] [Google Scholar]
  28. Yi Q., Scalley-Kim M. L., Alm E. J., Baker D. NMR characterization of residual structure in the denatured state of protein L. J Mol Biol. 2000 Jun 23;299(5):1341–1351. doi: 10.1006/jmbi.2000.3816. [DOI] [PubMed] [Google Scholar]
  29. de Jong E. A., van Duynhoven J. P., Harmsen B. J., Tesser G. I., Konings R. N., Hilbers C. W. Two-dimensional 1H nuclear magnetic resonance studies on the gene V-encoded single-stranded DNA-binding protein of the filamentous bacteriophage IKe. II. Characterization of the DNA-binding wing with the aid of spin-labelled oligonucleotides. J Mol Biol. 1989 Mar 5;206(1):133–152. doi: 10.1016/0022-2836(89)90529-9. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES