Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Sep;81(3):1285–1294. doi: 10.1016/S0006-3495(01)75786-4

Fluctuations and the Hofmeister effect.

A Neagu 1, M Neagu 1, A Dér 1
PMCID: PMC1301610  PMID: 11509345

Abstract

The Hofmeister effect consists in changes of protein solubility triggered by neutral electrolyte cosolutes. Based on the assumption that salts cause stochastic fluctuations of the free energy barrier profiles, a kinetic theory of this phenomenon is proposed. An exponentially correlated noise, of amplitude proportional to the salt concentration, is added to each energy level, and the time-dependence of the mean protein concentration is calculated. It is found that the theory yields the well-known Setschenow equation if the noise correlation time is low in comparison to the aggregation time constant. Experimental data on salting-in agents are well fitted, whereas, in the case of salting-out cosolutes, two independent dichotomic fluctuations are needed to fit the data. This may result from the fact that, in both cases, the low-concentration regime is dominated by salting-in electrostatic contributions, whereas, at high salt concentrations, electron donor/acceptor interactions become important; these have opposite effects. The theory offers a novel way to metricate Hofmeister effects and also leads to thermodynamic quantities, which account for the influence of salts. The formalism may also be applied to describe kinetic phenomena in the presence of cosolutes.

Full Text

The Full Text of this article is available as a PDF (184.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa T., Bhat R., Timasheff S. N. Preferential interactions determine protein solubility in three-component solutions: the MgCl2 system. Biochemistry. 1990 Feb 20;29(7):1914–1923. doi: 10.1021/bi00459a036. [DOI] [PubMed] [Google Scholar]
  2. Arakawa T., Bhat R., Timasheff S. N. Why preferential hydration does not always stabilize the native structure of globular proteins. Biochemistry. 1990 Feb 20;29(7):1924–1931. doi: 10.1021/bi00459a037. [DOI] [PubMed] [Google Scholar]
  3. Arakawa T., Timasheff S. N. Preferential interactions of proteins with salts in concentrated solutions. Biochemistry. 1982 Dec 7;21(25):6545–6552. doi: 10.1021/bi00268a034. [DOI] [PubMed] [Google Scholar]
  4. Baldwin R. L. How Hofmeister ion interactions affect protein stability. Biophys J. 1996 Oct;71(4):2056–2063. doi: 10.1016/S0006-3495(96)79404-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cacace M. G., Landau E. M., Ramsden J. J. The Hofmeister series: salt and solvent effects on interfacial phenomena. Q Rev Biophys. 1997 Aug;30(3):241–277. doi: 10.1017/s0033583597003363. [DOI] [PubMed] [Google Scholar]
  6. Collins K. D. Sticky ions in biological systems. Proc Natl Acad Sci U S A. 1995 Jun 6;92(12):5553–5557. doi: 10.1073/pnas.92.12.5553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Collins K. D., Washabaugh M. W. The Hofmeister effect and the behaviour of water at interfaces. Q Rev Biophys. 1985 Nov;18(4):323–422. doi: 10.1017/s0033583500005369. [DOI] [PubMed] [Google Scholar]
  8. Fulinski A. Barrier fluctuations and stochastic resonance in membrane transport. Chaos. 1998 Sep;8(3):549–556. doi: 10.1063/1.166336. [DOI] [PubMed] [Google Scholar]
  9. Grigorjev P. A., Bezrukov S. M. Hofmeister effect in ion transport: reversible binding of halide anions to the roflamycoin channel. Biophys J. 1994 Dec;67(6):2265–2271. doi: 10.1016/S0006-3495(94)80711-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Läuger P. Ionic channels with conformational substates. Biophys J. 1985 May;47(5):581–590. doi: 10.1016/S0006-3495(85)83954-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Läuger P., Stephan W., Frehland E. Fluctuations of barrier structure in ionic channels. Biochim Biophys Acta. 1980 Oct 16;602(1):167–180. doi: 10.1016/0005-2736(80)90299-0. [DOI] [PubMed] [Google Scholar]
  12. Melander W., Horváth C. Salt effect on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the lyotropic series. Arch Biochem Biophys. 1977 Sep;183(1):200–215. doi: 10.1016/0003-9861(77)90434-9. [DOI] [PubMed] [Google Scholar]
  13. Muneyuki E., Fukami T. A. Properties of the stochastic energization-relaxation channel model for vectorial ion transport. Biophys J. 2000 Mar;78(3):1166–1175. doi: 10.1016/S0006-3495(00)76674-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nagle J. F. Solving complex photocycle kinetics. Theory and direct method. Biophys J. 1991 Feb;59(2):476–487. doi: 10.1016/S0006-3495(91)82241-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Poillon W. N., Bertles J. F. Deoxygenated sickle hemoglobin. Effects of lyotropic salts on its solubility. J Biol Chem. 1979 May 10;254(9):3462–3467. [PubMed] [Google Scholar]
  16. ROBINSON D. R., JENCKS W. P. THE EFFECT OF CONCENTRATED SALT SOLUTIONS ON THE ACTIVITY COEFFICIENT OF ACETYLTETRAGLYCINE ETHYL ESTER. J Am Chem Soc. 1965 Jun 5;87:2470–2479. doi: 10.1021/ja01089a029. [DOI] [PubMed] [Google Scholar]
  17. Schellman J. A. A simple model for solvation in mixed solvents. Applications to the stabilization and destabilization of macromolecular structures. Biophys Chem. 1990 Aug 31;37(1-3):121–140. doi: 10.1016/0301-4622(90)88013-i. [DOI] [PubMed] [Google Scholar]
  18. Schellman J. A. Selective binding and solvent denaturation. Biopolymers. 1987 Apr;26(4):549–559. doi: 10.1002/bip.360260408. [DOI] [PubMed] [Google Scholar]
  19. Timasheff S. N. The control of protein stability and association by weak interactions with water: how do solvents affect these processes? Annu Rev Biophys Biomol Struct. 1993;22:67–97. doi: 10.1146/annurev.bb.22.060193.000435. [DOI] [PubMed] [Google Scholar]
  20. Vogel R., Fan G. B., Sheves M., Siebert F. Salt dependence of the formation and stability of the signaling state in G protein-coupled receptors: evidence for the involvement of the Hofmeister effect. Biochemistry. 2001 Jan 16;40(2):483–493. doi: 10.1021/bi001855r. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES