Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Sep;81(3):1295–1313. doi: 10.1016/S0006-3495(01)75787-6

Molecular dynamics force probe simulations of antibody/antigen unbinding: entropic control and nonadditivity of unbinding forces.

B Heymann 1, H Grubmüller 1
PMCID: PMC1301611  PMID: 11509346

Abstract

Unbinding of a spin-labeled dinitrophenyl (DNP) hapten from the monoclonal antibody AN02 F(ab) fragment has been studied by force probe molecular dynamics (FPMD) simulations. In our nanosecond simulations, unbinding was enforced by pulling the hapten molecule out of the binding pocket. Detailed inspection of the FPMD trajectories revealed a large heterogeneity of enforced unbinding pathways and a correspondingly large flexibility of the binding pocket region, which exhibited induced fit motions. Principal component analyses were used to estimate the resulting entropic contribution of approximately 6 kcal/mol to the AN02/DNP-hapten bond. This large contribution may explain the surprisingly large effect on binding kinetics found for mutation sites that are not directly involved in binding. We propose that such "entropic control" optimizes the binding kinetics of antibodies. Additional FPMD simulations of two point mutants in the light chain, Y33F and I96K, provided further support for a large flexibility of the binding pocket. Unbinding forces were found to be unchanged for these two mutants. Structural analysis of the FPMD simulations suggests that, in contrast to free energies of unbinding, the effect of mutations on unbinding forces is generally nonadditive.

Full Text

The Full Text of this article is available as a PDF (2.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen S., Chen X., Davies J., Davies M. C., Dawkes A. C., Edwards J. C., Roberts C. J., Sefton J., Tendler S. J., Williams P. M. Detection of antigen-antibody binding events with the atomic force microscope. Biochemistry. 1997 Jun 17;36(24):7457–7463. doi: 10.1021/bi962531z. [DOI] [PubMed] [Google Scholar]
  2. Amadei A., Linssen A. B., Berendsen H. J. Essential dynamics of proteins. Proteins. 1993 Dec;17(4):412–425. doi: 10.1002/prot.340170408. [DOI] [PubMed] [Google Scholar]
  3. Anglister J., Bond M. W., Frey T., Leahy D., Levitt M., McConnell H. M., Rule G. S., Tomasello J., Whittaker M. Contribution of tryptophan residues to the combining site of a monoclonal anti dinitrophenyl spin-label antibody. Biochemistry. 1987 Sep 22;26(19):6058–6064. doi: 10.1021/bi00393a017. [DOI] [PubMed] [Google Scholar]
  4. Ansari A., Berendzen J., Bowne S. F., Frauenfelder H., Iben I. E., Sauke T. B., Shyamsunder E., Young R. D. Protein states and proteinquakes. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5000–5004. doi: 10.1073/pnas.82.15.5000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bell G. I. Models for the specific adhesion of cells to cells. Science. 1978 May 12;200(4342):618–627. doi: 10.1126/science.347575. [DOI] [PubMed] [Google Scholar]
  6. Bernstein F. C., Koetzle T. F., Williams G. J., Meyer E. F., Jr, Brice M. D., Rodgers J. R., Kennard O., Shimanouchi T., Tasumi M. The Protein Data Bank: a computer-based archival file for macromolecular structures. J Mol Biol. 1977 May 25;112(3):535–542. doi: 10.1016/s0022-2836(77)80200-3. [DOI] [PubMed] [Google Scholar]
  7. Brünger A. T., Leahy D. J., Hynes T. R., Fox R. O. 2.9 A resolution structure of an anti-dinitrophenyl-spin-label monoclonal antibody Fab fragment with bound hapten. J Mol Biol. 1991 Sep 5;221(1):239–256. doi: 10.1016/0022-2836(91)80217-i. [DOI] [PubMed] [Google Scholar]
  8. Dammer U., Hegner M., Anselmetti D., Wagner P., Dreier M., Huber W., Güntherodt H. J. Specific antigen/antibody interactions measured by force microscopy. Biophys J. 1996 May;70(5):2437–2441. doi: 10.1016/S0006-3495(96)79814-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dickman S. Antibodies stage a comeback in cancer treatment. Science. 1998 May 22;280(5367):1196–1197. doi: 10.1126/science.280.5367.1196. [DOI] [PubMed] [Google Scholar]
  10. Elber R., Karplus M. Multiple conformational states of proteins: a molecular dynamics analysis of myoglobin. Science. 1987 Jan 16;235(4786):318–321. doi: 10.1126/science.3798113. [DOI] [PubMed] [Google Scholar]
  11. Evans E., Ritchie K. Dynamic strength of molecular adhesion bonds. Biophys J. 1997 Apr;72(4):1541–1555. doi: 10.1016/S0006-3495(97)78802-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Florin E. L., Moy V. T., Gaub H. E. Adhesion forces between individual ligand-receptor pairs. Science. 1994 Apr 15;264(5157):415–417. doi: 10.1126/science.8153628. [DOI] [PubMed] [Google Scholar]
  13. García AE. Large-amplitude nonlinear motions in proteins. Phys Rev Lett. 1992 Apr 27;68(17):2696–2699. doi: 10.1103/PhysRevLett.68.2696. [DOI] [PubMed] [Google Scholar]
  14. Grubmüller H., Heymann B., Tavan P. Ligand binding: molecular mechanics calculation of the streptavidin-biotin rupture force. Science. 1996 Feb 16;271(5251):997–999. doi: 10.1126/science.271.5251.997. [DOI] [PubMed] [Google Scholar]
  15. Grubmüller H. Predicting slow structural transitions in macromolecular systems: Conformational flooding. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Sep;52(3):2893–2906. doi: 10.1103/physreve.52.2893. [DOI] [PubMed] [Google Scholar]
  16. Hayward S., Berendsen H. J. Systematic analysis of domain motions in proteins from conformational change: new results on citrate synthase and T4 lysozyme. Proteins. 1998 Feb 1;30(2):144–154. [PubMed] [Google Scholar]
  17. Heymann B., Grubmüller H. Dynamic force spectroscopy of molecular adhesion bonds. Phys Rev Lett. 2000 Jun 26;84(26 Pt 1):6126–6129. doi: 10.1103/PhysRevLett.84.6126. [DOI] [PubMed] [Google Scholar]
  18. Hinterdorfer P., Baumgartner W., Gruber H. J., Schilcher K., Schindler H. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3477–3481. doi: 10.1073/pnas.93.8.3477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Isralewitz B., Izrailev S., Schulten K. Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations. Biophys J. 1997 Dec;73(6):2972–2979. doi: 10.1016/S0006-3495(97)78326-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Izrailev S., Stepaniants S., Balsera M., Oono Y., Schulten K. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys J. 1997 Apr;72(4):1568–1581. doi: 10.1016/S0006-3495(97)78804-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kellermayer M. S., Smith S. B., Granzier H. L., Bustamante C. Folding-unfolding transitions in single titin molecules characterized with laser tweezers. Science. 1997 May 16;276(5315):1112–1116. doi: 10.1126/science.276.5315.1112. [DOI] [PubMed] [Google Scholar]
  22. Koradi R., Billeter M., Wüthrich K. MOLMOL: a program for display and analysis of macromolecular structures. J Mol Graph. 1996 Feb;14(1):51-5, 29-32. doi: 10.1016/0263-7855(96)00009-4. [DOI] [PubMed] [Google Scholar]
  23. Kristensen O., Vassylyev D. G., Tanaka F., Morikawa K., Fujii I. A structural basis for transition-state stabilization in antibody-catalyzed hydrolysis: crystal structures of an abzyme at 1. 8 A resolution. J Mol Biol. 1998 Aug 21;281(3):501–511. doi: 10.1006/jmbi.1998.1940. [DOI] [PubMed] [Google Scholar]
  24. Kumar S., Ma B., Tsai C. J., Sinha N., Nussinov R. Folding and binding cascades: dynamic landscapes and population shifts. Protein Sci. 2000 Jan;9(1):10–19. doi: 10.1110/ps.9.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Leahy D. J., Rule G. S., Whittaker M. M., McConnell H. M. Sequences of 12 monoclonal anti-dinitrophenyl spin-label antibodies for NMR studies. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3661–3665. doi: 10.1073/pnas.85.11.3661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lee G. U., Chrisey L. A., Colton R. J. Direct measurement of the forces between complementary strands of DNA. Science. 1994 Nov 4;266(5186):771–773. doi: 10.1126/science.7973628. [DOI] [PubMed] [Google Scholar]
  27. Lu H., Isralewitz B., Krammer A., Vogel V., Schulten K. Unfolding of titin immunoglobulin domains by steered molecular dynamics simulation. Biophys J. 1998 Aug;75(2):662–671. doi: 10.1016/S0006-3495(98)77556-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Marrink S. J., Berger O., Tieleman P., Jähnig F. Adhesion forces of lipids in a phospholipid membrane studied by molecular dynamics simulations. Biophys J. 1998 Feb;74(2 Pt 1):931–943. doi: 10.1016/S0006-3495(98)74016-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Martinez-Yamout M., McConnell H. M. Site-directed mutagenesis and 1H nuclear magnetic resonance of an anti-dinitrophenyl spin label antibody. J Mol Biol. 1994 Dec 2;244(3):301–318. doi: 10.1006/jmbi.1994.1731. [DOI] [PubMed] [Google Scholar]
  30. McCammon J. A., Gelin B. R., Karplus M. Dynamics of folded proteins. Nature. 1977 Jun 16;267(5612):585–590. doi: 10.1038/267585a0. [DOI] [PubMed] [Google Scholar]
  31. McConnell H. M., Martinez-Yamout M. Insight into antibody combining sites using nuclear magnetic resonance and spin label haptens. Adv Protein Chem. 1996;49:135–148. doi: 10.1016/s0065-3233(08)60489-1. [DOI] [PubMed] [Google Scholar]
  32. Merkel R., Nassoy P., Leung A., Ritchie K., Evans E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature. 1999 Jan 7;397(6714):50–53. doi: 10.1038/16219. [DOI] [PubMed] [Google Scholar]
  33. Moy V. T., Florin E. L., Gaub H. E. Intermolecular forces and energies between ligands and receptors. Science. 1994 Oct 14;266(5183):257–259. doi: 10.1126/science.7939660. [DOI] [PubMed] [Google Scholar]
  34. Murzin A. G., Brenner S. E., Hubbard T., Chothia C. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995 Apr 7;247(4):536–540. doi: 10.1006/jmbi.1995.0159. [DOI] [PubMed] [Google Scholar]
  35. Padlan E. A. Anatomy of the antibody molecule. Mol Immunol. 1994 Feb;31(3):169–217. doi: 10.1016/0161-5890(94)90001-9. [DOI] [PubMed] [Google Scholar]
  36. Rejto P. A., Verkhivker G. M. Unraveling principles of lead discovery: from unfrustrated energy landscapes to novel molecular anchors. Proc Natl Acad Sci U S A. 1996 Aug 20;93(17):8945–8950. doi: 10.1073/pnas.93.17.8945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Rief M., Gautel M., Oesterhelt F., Fernandez J. M., Gaub H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 1997 May 16;276(5315):1109–1112. doi: 10.1126/science.276.5315.1109. [DOI] [PubMed] [Google Scholar]
  38. Rief M, Oesterhelt F, Heymann B, Gaub HE. Single Molecule Force Spectroscopy on Polysaccharides by Atomic Force Microscopy. Science. 1997 Feb 28;275(5304):1295–1297. doi: 10.1126/science.275.5304.1295. [DOI] [PubMed] [Google Scholar]
  39. Ros R., Schwesinger F., Anselmetti D., Kubon M., Schäfer R., Plückthun A., Tiefenauer L. Antigen binding forces of individually addressed single-chain Fv antibody molecules. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13):7402–7405. doi: 10.1073/pnas.95.13.7402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Theriault T. P., Leahy D. J., Levitt M., McConnell H. M., Rule G. S. Structural and kinetic studies of the Fab fragment of a monoclonal anti-spin label antibody by nuclear magnetic resonance. J Mol Biol. 1991 Sep 5;221(1):257–270. doi: 10.1016/0022-2836(91)80218-j. [DOI] [PubMed] [Google Scholar]
  41. Tskhovrebova L., Trinick J., Sleep J. A., Simmons R. M. Elasticity and unfolding of single molecules of the giant muscle protein titin. Nature. 1997 May 15;387(6630):308–312. doi: 10.1038/387308a0. [DOI] [PubMed] [Google Scholar]
  42. Wedemayer G. J., Patten P. A., Wang L. H., Schultz P. G., Stevens R. C. Structural insights into the evolution of an antibody combining site. Science. 1997 Jun 13;276(5319):1665–1669. doi: 10.1126/science.276.5319.1665. [DOI] [PubMed] [Google Scholar]
  43. Wolynes P. G., Onuchic J. N., Thirumalai D. Navigating the folding routes. Science. 1995 Mar 17;267(5204):1619–1620. doi: 10.1126/science.7886447. [DOI] [PubMed] [Google Scholar]
  44. van Aalten D. M., Conn D. A., de Groot B. L., Berendsen H. J., Findlay J. B., Amadei A. Protein dynamics derived from clusters of crystal structures. Biophys J. 1997 Dec;73(6):2891–2896. doi: 10.1016/S0006-3495(97)78317-6. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES