Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Sep;81(3):1345–1359. doi: 10.1016/S0006-3495(01)75791-8

Molecular dynamics simulations of wild-type and mutant forms of the Mycobacterium tuberculosis MscL channel.

D E Elmore 1, D A Dougherty 1
PMCID: PMC1301615  PMID: 11509350

Abstract

The crystal structure of the Mycobacterium tuberculosis homolog of the bacterial mechanosensitive channel of large conductance (Tb-MscL) provides a unique opportunity to consider mechanosensitive signal transduction at the atomic level. Molecular dynamics simulations of the Tb-MscL channel embedded in an explicit lipid bilayer and of its C-terminal helical bundle alone in aqueous solvent were performed. C-terminal calculations imply that although the helix bundle structure is relatively unstable at physiological pH, it may have been stabilized under low pH conditions such as those used in the crystallization of the channel. Specific mutations to the C-terminal region, which cause a similar conservation of the crystal structure conformation, have also been identified. Full channel simulations were performed for the wild-type channel and two experimentally characterized gain-of-function mutants, V21A and Q51E. The wild-type Tb-MscL trajectory gives insight into regions of relative structural stability and instability in the channel structure. Channel mutations led to observable changes in the trajectories, such as an alteration of intersubunit interactions in the Q51E mutant. In addition, interesting patterns of protein-lipid interactions, such as hydrogen bonding, arose in the simulations. These and other observations from the simulations are relevant to previous and ongoing experimental studies focusing on characterization of the channel.

Full Text

The Full Text of this article is available as a PDF (2.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ajouz B., Berrier C., Besnard M., Martinac B., Ghazi A. Contributions of the different extramembranous domains of the mechanosensitive ion channel MscL to its response to membrane tension. J Biol Chem. 2000 Jan 14;275(2):1015–1022. doi: 10.1074/jbc.275.2.1015. [DOI] [PubMed] [Google Scholar]
  2. Berger O., Edholm O., Jähnig F. Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophys J. 1997 May;72(5):2002–2013. doi: 10.1016/S0006-3495(97)78845-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bernèche S., Roux B. Molecular dynamics of the KcsA K(+) channel in a bilayer membrane. Biophys J. 2000 Jun;78(6):2900–2917. doi: 10.1016/S0006-3495(00)76831-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berrier C., Coulombe A., Houssin C., Ghazi A. A patch-clamp study of ion channels of inner and outer membranes and of contact zones of E. coli, fused into giant liposomes. Pressure-activated channels are localized in the inner membrane. FEBS Lett. 1989 Dec 18;259(1):27–32. doi: 10.1016/0014-5793(89)81486-3. [DOI] [PubMed] [Google Scholar]
  5. Blount P., Moe P. C. Bacterial mechanosensitive channels: integrating physiology, structure and function. Trends Microbiol. 1999 Oct;7(10):420–424. doi: 10.1016/s0966-842x(99)01594-2. [DOI] [PubMed] [Google Scholar]
  6. Blount P., Schroeder M. J., Kung C. Mutations in a bacterial mechanosensitive channel change the cellular response to osmotic stress. J Biol Chem. 1997 Dec 19;272(51):32150–32157. doi: 10.1074/jbc.272.51.32150. [DOI] [PubMed] [Google Scholar]
  7. Blount P., Sukharev S. I., Moe P. C., Schroeder M. J., Guy H. R., Kung C. Membrane topology and multimeric structure of a mechanosensitive channel protein of Escherichia coli. EMBO J. 1996 Sep 16;15(18):4798–4805. [PMC free article] [PubMed] [Google Scholar]
  8. Blount P., Sukharev S. I., Schroeder M. J., Nagle S. K., Kung C. Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli. Proc Natl Acad Sci U S A. 1996 Oct 15;93(21):11652–11657. doi: 10.1073/pnas.93.21.11652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Capener C. E., Shrivastava I. H., Ranatunga K. M., Forrest L. R., Smith G. R., Sansom M. S. Homology modeling and molecular dynamics simulation studies of an inward rectifier potassium channel. Biophys J. 2000 Jun;78(6):2929–2942. doi: 10.1016/S0006-3495(00)76833-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chang G., Spencer R. H., Lee A. T., Barclay M. T., Rees D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science. 1998 Dec 18;282(5397):2220–2226. doi: 10.1126/science.282.5397.2220. [DOI] [PubMed] [Google Scholar]
  11. Chiu S. W., Subramaniam S., Jakobsson E. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. I. Structure of the molecular complex. Biophys J. 1999 Apr;76(4):1929–1938. doi: 10.1016/S0006-3495(99)77352-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Chiu S. W., Subramaniam S., Jakobsson E. Simulation study of a gramicidin/lipid bilayer system in excess water and lipid. II. Rates and mechanisms of water transport. Biophys J. 1999 Apr;76(4):1939–1950. doi: 10.1016/S0006-3495(99)77353-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fischer W. B., Pitkeathly M., Wallace B. A., Forrest L. R., Smith G. R., Sansom M. S. Transmembrane peptide NB of influenza B: a simulation, structure, and conductance study. Biochemistry. 2000 Oct 17;39(41):12708–12716. doi: 10.1021/bi001000e. [DOI] [PubMed] [Google Scholar]
  14. Forrest L. R., Kukol A., Arkin I. T., Tieleman D. P., Sansom M. S. Exploring models of the influenza A M2 channel: MD simulations in a phospholipid bilayer. Biophys J. 2000 Jan;78(1):55–69. doi: 10.1016/s0006-3495(00)76572-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Forrest L. R., Sansom M. S. Membrane simulations: bigger and better? Curr Opin Struct Biol. 2000 Apr;10(2):174–181. doi: 10.1016/s0959-440x(00)00066-x. [DOI] [PubMed] [Google Scholar]
  16. Forrest L. R., Tieleman D. P., Sansom M. S. Defining the transmembrane helix of M2 protein from influenza A by molecular dynamics simulations in a lipid bilayer. Biophys J. 1999 Apr;76(4):1886–1896. doi: 10.1016/s0006-3495(99)77347-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Guidoni L., Torre V., Carloni P. Potassium and sodium binding to the outer mouth of the K+ channel. Biochemistry. 1999 Jul 6;38(27):8599–8604. doi: 10.1021/bi990540c. [DOI] [PubMed] [Google Scholar]
  18. Guidoni L., Torre V., Carloni P. Water and potassium dynamics inside the KcsA K(+) channel. FEBS Lett. 2000 Jul 14;477(1-2):37–42. doi: 10.1016/s0014-5793(00)01712-9. [DOI] [PubMed] [Google Scholar]
  19. Hendsch Z. S., Tidor B. Do salt bridges stabilize proteins? A continuum electrostatic analysis. Protein Sci. 1994 Feb;3(2):211–226. doi: 10.1002/pro.5560030206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Husslein T., Moore P. B., Zhong Q., Newns D. M., Pattnaik P. C., Klein M. L. Molecular dynamics simulation of a hydrated diphytanol phosphatidylcholine lipid bilayer containing an alpha-helical bundle of four transmembrane domains of the influenza A virus M2 protein. Faraday Discuss. 1998;(111):201–246. doi: 10.1039/a806675b. [DOI] [PubMed] [Google Scholar]
  21. Häse C. C., Le Dain A. C., Martinac B. Purification and functional reconstitution of the recombinant large mechanosensitive ion channel (MscL) of Escherichia coli. J Biol Chem. 1995 Aug 4;270(31):18329–18334. doi: 10.1074/jbc.270.31.18329. [DOI] [PubMed] [Google Scholar]
  22. Häse C. C., Minchin R. F., Kloda A., Martinac B. Cross-linking studies and membrane localization and assembly of radiolabelled large mechanosensitive ion channel (MscL) of Escherichia coli. Biochem Biophys Res Commun. 1997 Mar 27;232(3):777–782. doi: 10.1006/bbrc.1997.6370. [DOI] [PubMed] [Google Scholar]
  23. Kabsch W., Sander C. Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983 Dec;22(12):2577–2637. doi: 10.1002/bip.360221211. [DOI] [PubMed] [Google Scholar]
  24. Law R. J., Forrest L. R., Ranatunga K. M., La Rocca P., Tieleman D. P., Sansom M. S. Structure and dynamics of the pore-lining helix of the nicotinic receptor: MD simulations in water, lipid bilayers, and transbilayer bundles. Proteins. 2000 Apr 1;39(1):47–55. doi: 10.1002/(sici)1097-0134(20000401)39:1<47::aid-prot5>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  25. Lee R. E., Brennan P. J., Besra G. S. Mycobacterium tuberculosis cell envelope. Curr Top Microbiol Immunol. 1996;215:1–27. doi: 10.1007/978-3-642-80166-2_1. [DOI] [PubMed] [Google Scholar]
  26. Levina N., Tötemeyer S., Stokes N. R., Louis P., Jones M. A., Booth I. R. Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J. 1999 Apr 1;18(7):1730–1737. doi: 10.1093/emboj/18.7.1730. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Liedtke W., Choe Y., Martí-Renom M. A., Bell A. M., Denis C. S., Sali A., Hudspeth A. J., Friedman J. M., Heller S. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell. 2000 Oct 27;103(3):525–535. doi: 10.1016/s0092-8674(00)00143-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lin J. H., Baumgaertner A. Stability of a melittin pore in a lipid bilayer: a molecular dynamics study. Biophys J. 2000 Apr;78(4):1714–1724. doi: 10.1016/S0006-3495(00)76723-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Maurer J. A., Elmore D. E., Lester H. A., Dougherty D. A. Comparing and contrasting Escherichia coli and Mycobacterium tuberculosis mechanosensitive channels (MscL). New gain of function mutations in the loop region. J Biol Chem. 2000 Jul 21;275(29):22238–22244. doi: 10.1074/jbc.M003056200. [DOI] [PubMed] [Google Scholar]
  30. Moe P. C., Blount P., Kung C. Functional and structural conservation in the mechanosensitive channel MscL implicates elements crucial for mechanosensation. Mol Microbiol. 1998 May;28(3):583–592. doi: 10.1046/j.1365-2958.1998.00821.x. [DOI] [PubMed] [Google Scholar]
  31. Moe P. C., Levin G., Blount P. Correlating a protein structure with function of a bacterial mechanosensitive channel. J Biol Chem. 2000 Oct 6;275(40):31121–31127. doi: 10.1074/jbc.M002971200. [DOI] [PubMed] [Google Scholar]
  32. Murzyn K., Pasenkiewicz-Gierula M. Construction and optimisation of a computer model for a bacterial membrane. Acta Biochim Pol. 1999;46(3):631–639. [PubMed] [Google Scholar]
  33. Nakamaru Y., Takahashi Y., Unemoto T., Nakamura T. Mechanosensitive channel functions to alleviate the cell lysis of marine bacterium, Vibrio alginolyticus, by osmotic downshock. FEBS Lett. 1999 Feb 12;444(2-3):170–172. doi: 10.1016/s0014-5793(99)00054-x. [DOI] [PubMed] [Google Scholar]
  34. Oakley A. J., Martinac B., Wilce M. C. Structure and function of the bacterial mechanosensitive channel of large conductance. Protein Sci. 1999 Oct;8(10):1915–1921. doi: 10.1110/ps.8.10.1915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Opsahl L. R., Webb W. W. Transduction of membrane tension by the ion channel alamethicin. Biophys J. 1994 Jan;66(1):71–74. doi: 10.1016/S0006-3495(94)80751-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ou X., Blount P., Hoffman R. J., Kung C. One face of a transmembrane helix is crucial in mechanosensitive channel gating. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11471–11475. doi: 10.1073/pnas.95.19.11471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Pasenkiewicz-Gierula M., Róg T., Kitamura K., Kusumi A. Cholesterol effects on the phosphatidylcholine bilayer polar region: a molecular simulation study. Biophys J. 2000 Mar;78(3):1376–1389. doi: 10.1016/S0006-3495(00)76691-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Randa H. S., Forrest L. R., Voth G. A., Sansom M. S. Molecular dynamics of synthetic leucine-serine ion channels in a phospholipid membrane. Biophys J. 1999 Nov;77(5):2400–2410. doi: 10.1016/S0006-3495(99)77077-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Sayle R. A., Milner-White E. J. RASMOL: biomolecular graphics for all. Trends Biochem Sci. 1995 Sep;20(9):374–374. doi: 10.1016/s0968-0004(00)89080-5. [DOI] [PubMed] [Google Scholar]
  40. Scholtz J. M., Qian H., Robbins V. H., Baldwin R. L. The energetics of ion-pair and hydrogen-bonding interactions in a helical peptide. Biochemistry. 1993 Sep 21;32(37):9668–9676. doi: 10.1021/bi00088a019. [DOI] [PubMed] [Google Scholar]
  41. Schweighofer K. J., Pohorille A. Computer simulation of ion channel gating: the M(2) channel of influenza A virus in a lipid bilayer. Biophys J. 2000 Jan;78(1):150–163. doi: 10.1016/S0006-3495(00)76581-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Shrivastava I. H., Sansom M. S. Simulations of ion permeation through a potassium channel: molecular dynamics of KcsA in a phospholipid bilayer. Biophys J. 2000 Feb;78(2):557–570. doi: 10.1016/S0006-3495(00)76616-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Smart O. S., Breed J., Smith G. R., Sansom M. S. A novel method for structure-based prediction of ion channel conductance properties. Biophys J. 1997 Mar;72(3):1109–1126. doi: 10.1016/S0006-3495(97)78760-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Smondyrev A. M., Berkowitz M. L. Molecular dynamics simulation of dipalmitoylphosphatidylcholine membrane with cholesterol sulfate. Biophys J. 2000 Apr;78(4):1672–1680. doi: 10.1016/S0006-3495(00)76719-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Smondyrev A. M., Berkowitz M. L. Structure of dipalmitoylphosphatidylcholine/cholesterol bilayer at low and high cholesterol concentrations: molecular dynamics simulation. Biophys J. 1999 Oct;77(4):2075–2089. doi: 10.1016/S0006-3495(99)77049-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Spencer R. H., Chang G., Rees D. C. 'Feeling the pressure': structural insights into a gated mechanosensitive channel. Curr Opin Struct Biol. 1999 Aug;9(4):448–454. doi: 10.1016/S0959-440X(99)80063-3. [DOI] [PubMed] [Google Scholar]
  47. Sukharev S. I., Blount P., Martinac B., Blattner F. R., Kung C. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature. 1994 Mar 17;368(6468):265–268. doi: 10.1038/368265a0. [DOI] [PubMed] [Google Scholar]
  48. Sukharev S. I., Blount P., Martinac B., Kung C. Mechanosensitive channels of Escherichia coli: the MscL gene, protein, and activities. Annu Rev Physiol. 1997;59:633–657. doi: 10.1146/annurev.physiol.59.1.633. [DOI] [PubMed] [Google Scholar]
  49. Sukharev S. I., Martinac B., Arshavsky V. Y., Kung C. Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys J. 1993 Jul;65(1):177–183. doi: 10.1016/S0006-3495(93)81044-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Sukharev S. Mechanosensitive channels in bacteria as membrane tension reporters. FASEB J. 1999;13 (Suppl):S55–S61. doi: 10.1096/fasebj.13.9001.s55. [DOI] [PubMed] [Google Scholar]
  51. Sun D. P., Sauer U., Nicholson H., Matthews B. W. Contributions of engineered surface salt bridges to the stability of T4 lysozyme determined by directed mutagenesis. Biochemistry. 1991 Jul 23;30(29):7142–7153. doi: 10.1021/bi00243a015. [DOI] [PubMed] [Google Scholar]
  52. Tang Y. Z., Chen W. Z., Wang C. X., Shi Y. Y. Constructing the suitable initial configuration of the membrane-protein system in molecular dynamics simulations. Eur Biophys J. 1999;28(6):478–488. doi: 10.1007/s002490050230. [DOI] [PubMed] [Google Scholar]
  53. Tieleman D. P., Berendsen H. J. A molecular dynamics study of the pores formed by Escherichia coli OmpF porin in a fully hydrated palmitoyloleoylphosphatidylcholine bilayer. Biophys J. 1998 Jun;74(6):2786–2801. doi: 10.1016/S0006-3495(98)77986-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Tieleman D. P., Berendsen H. J., Sansom M. S. An alamethicin channel in a lipid bilayer: molecular dynamics simulations. Biophys J. 1999 Apr;76(4):1757–1769. doi: 10.1016/s0006-3495(99)77337-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Tieleman D. P., Breed J., Berendsen H. J., Sansom M. S. Alamethicin channels in a membrane: molecular dynamics simulations. Faraday Discuss. 1998;(111):209–246. doi: 10.1039/a806266h. [DOI] [PubMed] [Google Scholar]
  56. Tieleman D. P., Forrest L. R., Sansom M. S., Berendsen H. J. Lipid properties and the orientation of aromatic residues in OmpF, influenza M2, and alamethicin systems: molecular dynamics simulations. Biochemistry. 1998 Dec 15;37(50):17554–17561. doi: 10.1021/bi981802y. [DOI] [PubMed] [Google Scholar]
  57. Tieleman D. P., Sansom M. S., Berendsen H. J. Alamethicin helices in a bilayer and in solution: molecular dynamics simulations. Biophys J. 1999 Jan;76(1 Pt 1):40–49. doi: 10.1016/S0006-3495(99)77176-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Tu K., Klein M. L., Tobias D. J. Constant-pressure molecular dynamics investigation of cholesterol effects in a dipalmitoylphosphatidylcholine bilayer. Biophys J. 1998 Nov;75(5):2147–2156. doi: 10.1016/S0006-3495(98)77657-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Wood J. M. Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev. 1999 Mar;63(1):230–262. doi: 10.1128/mmbr.63.1.230-262.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Woolf T. B., Roux B. Structure, energetics, and dynamics of lipid-protein interactions: A molecular dynamics study of the gramicidin A channel in a DMPC bilayer. Proteins. 1996 Jan;24(1):92–114. doi: 10.1002/(SICI)1097-0134(199601)24:1<92::AID-PROT7>3.0.CO;2-Q. [DOI] [PubMed] [Google Scholar]
  61. Yoshimura K., Batiza A., Schroeder M., Blount P., Kung C. Hydrophilicity of a single residue within MscL correlates with increased channel mechanosensitivity. Biophys J. 1999 Oct;77(4):1960–1972. doi: 10.1016/S0006-3495(99)77037-2. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES