Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Sep;81(3):1360–1372. doi: 10.1016/S0006-3495(01)75792-X

Stochastic simulation of hemagglutinin-mediated fusion pore formation.

S Schreiber 1, K Ludwig 1, A Herrmann 1, H G Holzhütter 1
PMCID: PMC1301616  PMID: 11509351

Abstract

Studies on fusion between cell pairs have provided evidence that opening and subsequent dilation of a fusion pore are stochastic events. Therefore, adequate modeling of fusion pore formation requires a stochastic approach. Here we present stochastic simulations of hemagglutinin (HA)-mediated fusion pore formation between HA-expressing cells and erythrocytes based on numerical solutions of a master equation. The following elementary processes are taken into account: 1) lateral diffusion of HA-trimers and receptors, 2) aggregation of HA-trimers to immobilized clusters, 3) reversible formation of HA-receptor contacts, and 4) irreversible conversion of HA-receptor contacts into stable links between HA and the target membrane. The contact sites between fusing cells are modeled as superimposed square lattices. The model simulates well the statistical distribution of time delays measured for the various intermediates of fusion pore formation between cell-cell fusion complexes. In particular, these are the formation of small ion-permissive and subsequent lipid-permissive fusion pores detected experimentally (R. Blumenthal, D. P. Sarkar, S. Durell, D. E. Howard, and S. J., J. Cell Biol. 135:63-71). Moreover, by averaging the simulated individual stochastic time courses across a larger population of cell-cell-complexes the model also provides a reasonable description of kinetic measurements on lipid mixing in cell suspensions (T. Danieli, S. L. Pelletier, Y.I. Henis, and J. M. White, 1996, J. Cell Biol. 133:559-569).

Full Text

The Full Text of this article is available as a PDF (163.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alford D., Ellens H., Bentz J. Fusion of influenza virus with sialic acid-bearing target membranes. Biochemistry. 1994 Mar 1;33(8):1977–1987. doi: 10.1021/bi00174a002. [DOI] [PubMed] [Google Scholar]
  2. Aroeti B., Henis Y. I. Fusion of native Sendai virions with human erythrocytes. Quantitation by fluorescence photobleaching recovery. Exp Cell Res. 1987 Jun;170(2):322–337. doi: 10.1016/0014-4827(87)90310-7. [DOI] [PubMed] [Google Scholar]
  3. Baker K. A., Dutch R. E., Lamb R. A., Jardetzky T. S. Structural basis for paramyxovirus-mediated membrane fusion. Mol Cell. 1999 Mar;3(3):309–319. doi: 10.1016/s1097-2765(00)80458-x. [DOI] [PubMed] [Google Scholar]
  4. Bentz J. Intermediates and kinetics of membrane fusion. Biophys J. 1992 Aug;63(2):448–459. doi: 10.1016/S0006-3495(92)81622-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bentz J. Minimal aggregate size and minimal fusion unit for the first fusion pore of influenza hemagglutinin-mediated membrane fusion. Biophys J. 2000 Jan;78(1):227–245. doi: 10.1016/S0006-3495(00)76587-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Blumenthal R., Sarkar D. P., Durell S., Howard D. E., Morris S. J. Dilation of the influenza hemagglutinin fusion pore revealed by the kinetics of individual cell-cell fusion events. J Cell Biol. 1996 Oct;135(1):63–71. doi: 10.1083/jcb.135.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bullough P. A., Hughson F. M., Skehel J. J., Wiley D. C. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature. 1994 Sep 1;371(6492):37–43. doi: 10.1038/371037a0. [DOI] [PubMed] [Google Scholar]
  8. Burger K. N., Wharton S. A., Demel R. A., Verkleij A. J. Interaction of influenza virus hemagglutinin with a lipid monolayer. A comparison of the surface activities of intact virions, isolated hemagglutinins, and a synthetic fusion peptide. Biochemistry. 1991 Nov 19;30(46):11173–11180. doi: 10.1021/bi00110a022. [DOI] [PubMed] [Google Scholar]
  9. Böttcher C., Ludwig K., Herrmann A., van Heel M., Stark H. Structure of influenza haemagglutinin at neutral and at fusogenic pH by electron cryo-microscopy. FEBS Lett. 1999 Dec 17;463(3):255–259. doi: 10.1016/s0014-5793(99)01475-1. [DOI] [PubMed] [Google Scholar]
  10. Caffrey M., Cai M., Kaufman J., Stahl S. J., Wingfield P. T., Covell D. G., Gronenborn A. M., Clore G. M. Three-dimensional solution structure of the 44 kDa ectodomain of SIV gp41. EMBO J. 1998 Aug 17;17(16):4572–4584. doi: 10.1093/emboj/17.16.4572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Carr C. M., Kim P. S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell. 1993 May 21;73(4):823–832. doi: 10.1016/0092-8674(93)90260-w. [DOI] [PubMed] [Google Scholar]
  12. Chan D. C., Fass D., Berger J. M., Kim P. S. Core structure of gp41 from the HIV envelope glycoprotein. Cell. 1997 Apr 18;89(2):263–273. doi: 10.1016/s0092-8674(00)80205-6. [DOI] [PubMed] [Google Scholar]
  13. Chen J., Skehel J. J., Wiley D. C. N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA(2) subunit to form an N cap that terminates the triple-stranded coiled coil. Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8967–8972. doi: 10.1073/pnas.96.16.8967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Chen Y. D., Rubin R. J., Szabo A. Fluorescence dequenching kinetics of single cell-cell fusion complexes. Biophys J. 1993 Jul;65(1):325–333. doi: 10.1016/S0006-3495(93)81076-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Clague M. J., Schoch C., Blumenthal R. Delay time for influenza virus hemagglutinin-induced membrane fusion depends on hemagglutinin surface density. J Virol. 1991 May;65(5):2402–2407. doi: 10.1128/jvi.65.5.2402-2407.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Danieli T., Pelletier S. L., Henis Y. I., White J. M. Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers. J Cell Biol. 1996 May;133(3):559–569. doi: 10.1083/jcb.133.3.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Doms R. W., Helenius A. Quaternary structure of influenza virus hemagglutinin after acid treatment. J Virol. 1986 Dec;60(3):833–839. doi: 10.1128/jvi.60.3.833-839.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Durell S. R., Martin I., Ruysschaert J. M., Shai Y., Blumenthal R. What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion (review). Mol Membr Biol. 1997 Jul-Sep;14(3):97–112. doi: 10.3109/09687689709048170. [DOI] [PubMed] [Google Scholar]
  19. Ellens H., Bentz J., Mason D., Zhang F., White J. M. Fusion of influenza hemagglutinin-expressing fibroblasts with glycophorin-bearing liposomes: role of hemagglutinin surface density. Biochemistry. 1990 Oct 16;29(41):9697–9707. doi: 10.1021/bi00493a027. [DOI] [PubMed] [Google Scholar]
  20. Fass D., Harrison S. C., Kim P. S. Retrovirus envelope domain at 1.7 angstrom resolution. Nat Struct Biol. 1996 May;3(5):465–469. doi: 10.1038/nsb0596-465. [DOI] [PubMed] [Google Scholar]
  21. Frolov V. A., Cho M. S., Bronk P., Reese T. S., Zimmerberg J. Multiple local contact sites are induced by GPI-linked influenza hemagglutinin during hemifusion and flickering pore formation. Traffic. 2000 Aug;1(8):622–630. doi: 10.1034/j.1600-0854.2000.010806.x. [DOI] [PubMed] [Google Scholar]
  22. Gething M. J., Doms R. W., York D., White J. Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus. J Cell Biol. 1986 Jan;102(1):11–23. doi: 10.1083/jcb.102.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Gutman O., Danieli T., White J. M., Henis Y. I. Effects of exposure to low pH on the lateral mobility of influenza hemagglutinin expressed at the cell surface: correlation between mobility inhibition and inactivation. Biochemistry. 1993 Jan 12;32(1):101–106. doi: 10.1021/bi00052a014. [DOI] [PubMed] [Google Scholar]
  24. Kanaseki T., Kawasaki K., Murata M., Ikeuchi Y., Ohnishi S. Structural features of membrane fusion between influenza virus and liposome as revealed by quick-freezing electron microscopy. J Cell Biol. 1997 Jun 2;137(5):1041–1056. doi: 10.1083/jcb.137.5.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kemble G. W., Henis Y. I., White J. M. GPI- and transmembrane-anchored influenza hemagglutinin differ in structure and receptor binding activity. J Cell Biol. 1993 Sep;122(6):1253–1265. doi: 10.1083/jcb.122.6.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kobe B., Center R. J., Kemp B. E., Poumbourios P. Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins. Proc Natl Acad Sci U S A. 1999 Apr 13;96(8):4319–4324. doi: 10.1073/pnas.96.8.4319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Korte T., Herrmann A. pH-dependent binding of the fluorophore bis-ANS to influenza virus reflects the conformational change of hemagglutinin. Eur Biophys J. 1994;23(2):105–113. doi: 10.1007/BF00208864. [DOI] [PubMed] [Google Scholar]
  28. Korte T., Ludwig K., Booy F. P., Blumenthal R., Herrmann A. Conformational intermediates and fusion activity of influenza virus hemagglutinin. J Virol. 1999 Jun;73(6):4567–4574. doi: 10.1128/jvi.73.6.4567-4574.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kozlov M. M., Chernomordik L. V. A mechanism of protein-mediated fusion: coupling between refolding of the influenza hemagglutinin and lipid rearrangements. Biophys J. 1998 Sep;75(3):1384–1396. doi: 10.1016/S0006-3495(98)74056-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Krumbiegel M., Herrmann A., Blumenthal R. Kinetics of the low pH-induced conformational changes and fusogenic activity of influenza hemagglutinin. Biophys J. 1994 Dec;67(6):2355–2360. doi: 10.1016/S0006-3495(94)80721-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Leikina E., Markovic I., Chernomordik L. V., Kozlov M. M. Delay of influenza hemagglutinin refolding into a fusion-competent conformation by receptor binding: a hypothesis. Biophys J. 2000 Sep;79(3):1415–1427. doi: 10.1016/S0006-3495(00)76393-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Ludwig K., Korte T., Herrmann A. Analysis of delay times of hemagglutinin-mediated fusion between influenza virus and cell membranes. Eur Biophys J. 1995;24(2):55–64. doi: 10.1007/BF00211399. [DOI] [PubMed] [Google Scholar]
  33. Malashkevich V. N., Schneider B. J., McNally M. L., Milhollen M. A., Pang J. X., Kim P. S. Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-A resolution. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2662–2667. doi: 10.1073/pnas.96.6.2662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Markovic I., Pulyaeva H., Sokoloff A., Chernomordik L. V. Membrane fusion mediated by baculovirus gp64 involves assembly of stable gp64 trimers into multiprotein aggregates. J Cell Biol. 1998 Nov 30;143(5):1155–1166. doi: 10.1083/jcb.143.5.1155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Melikyan G. B., Niles W. D., Cohen F. S. Influenza virus hemagglutinin-induced cell-planar bilayer fusion: quantitative dissection of fusion pore kinetics into stages. J Gen Physiol. 1993 Dec;102(6):1151–1170. doi: 10.1085/jgp.102.6.1151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Melikyan G. B., Niles W. D., Cohen F. S. The fusion kinetics of influenza hemagglutinin expressing cells to planar bilayer membranes is affected by HA density and host cell surface. J Gen Physiol. 1995 Nov;106(5):783–802. doi: 10.1085/jgp.106.5.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Melikyan G. B., White J. M., Cohen F. S. GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J Cell Biol. 1995 Nov;131(3):679–691. doi: 10.1083/jcb.131.3.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Morris S. J., Sarkar D. P., White J. M., Blumenthal R. Kinetics of pH-dependent fusion between 3T3 fibroblasts expressing influenza hemagglutinin and red blood cells. Measurement by dequenching of fluorescence. J Biol Chem. 1989 Mar 5;264(7):3972–3978. [PubMed] [Google Scholar]
  39. Nüssler F., Clague M. J., Herrmann A. Meta-stability of the hemifusion intermediate induced by glycosylphosphatidylinositol-anchored influenza hemagglutinin. Biophys J. 1997 Nov;73(5):2280–2291. doi: 10.1016/S0006-3495(97)78260-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Pak C. C., Krumbiegel M., Blumenthal R. Intermediates in influenza virus PR/8 haemagglutinin-induced membrane fusion. J Gen Virol. 1994 Feb;75(Pt 2):395–399. doi: 10.1099/0022-1317-75-2-395. [DOI] [PubMed] [Google Scholar]
  41. Qiao H., Pelletier S. L., Hoffman L., Hacker J., Armstrong R. T., White J. M. Specific single or double proline substitutions in the "spring-loaded" coiled-coil region of the influenza hemagglutinin impair or abolish membrane fusion activity. J Cell Biol. 1998 Jun 15;141(6):1335–1347. doi: 10.1083/jcb.141.6.1335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ramalho-Santos J., Nir S., Düzgünes N., de Carvalho A. P., de Lima M. da C. A common mechanism for influenza virus fusion activity and inactivation. Biochemistry. 1993 Mar 23;32(11):2771–2779. doi: 10.1021/bi00062a006. [DOI] [PubMed] [Google Scholar]
  43. Sauter N. K., Hanson J. E., Glick G. D., Brown J. H., Crowther R. L., Park S. J., Skehel J. J., Wiley D. C. Binding of influenza virus hemagglutinin to analogs of its cell-surface receptor, sialic acid: analysis by proton nuclear magnetic resonance spectroscopy and X-ray crystallography. Biochemistry. 1992 Oct 13;31(40):9609–9621. doi: 10.1021/bi00155a013. [DOI] [PubMed] [Google Scholar]
  44. Schoen P., Leserman L., Wilschut J. Fusion of reconstituted influenza virus envelopes with liposomes mediated by streptavidin/biotin interactions. FEBS Lett. 1996 Jul 29;390(3):315–318. doi: 10.1016/0014-5793(96)00682-5. [DOI] [PubMed] [Google Scholar]
  45. Shangguan T., Siegel D. P., Lear J. D., Axelsen P. H., Alford D., Bentz J. Morphological changes and fusogenic activity of influenza virus hemagglutinin. Biophys J. 1998 Jan;74(1):54–62. doi: 10.1016/S0006-3495(98)77766-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sheetz M. P. Membrane skeletal dynamics: role in modulation of red cell deformability, mobility of transmembrane proteins, and shape. Semin Hematol. 1983 Jul;20(3):175–188. [PubMed] [Google Scholar]
  47. Skehel J. J., Wiley D. C. Coiled coils in both intracellular vesicle and viral membrane fusion. Cell. 1998 Dec 23;95(7):871–874. doi: 10.1016/s0092-8674(00)81710-9. [DOI] [PubMed] [Google Scholar]
  48. Spruce A. E., Iwata A., Almers W. The first milliseconds of the pore formed by a fusogenic viral envelope protein during membrane fusion. Proc Natl Acad Sci U S A. 1991 May 1;88(9):3623–3627. doi: 10.1073/pnas.88.9.3623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Stegmann T., Bartoldus I., Zumbrunn J. Influenza hemagglutinin-mediated membrane fusion: influence of receptor binding on the lag phase preceding fusion. Biochemistry. 1995 Feb 14;34(6):1825–1832. doi: 10.1021/bi00006a002. [DOI] [PubMed] [Google Scholar]
  50. Stegmann T., White J. M., Helenius A. Intermediates in influenza induced membrane fusion. EMBO J. 1990 Dec;9(13):4231–4241. doi: 10.1002/j.1460-2075.1990.tb07871.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tan K., Liu J., Wang J., Shen S., Lu M. Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc Natl Acad Sci U S A. 1997 Nov 11;94(23):12303–12308. doi: 10.1073/pnas.94.23.12303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Träuble H., Sackmann E. Studies of the crystalline-liquid crystalline phase transition of lipid model membranes. 3. Structure of a steroid-lecithin system below and above the lipid-phase transition. J Am Chem Soc. 1972 Jun 28;94(13):4499–4510. doi: 10.1021/ja00768a015. [DOI] [PubMed] [Google Scholar]
  53. Tse F. W., Iwata A., Almers W. Membrane flux through the pore formed by a fusogenic viral envelope protein during cell fusion. J Cell Biol. 1993 May;121(3):543–552. doi: 10.1083/jcb.121.3.543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Weissenhorn W., Carfí A., Lee K. H., Skehel J. J., Wiley D. C. Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain. Mol Cell. 1998 Nov;2(5):605–616. doi: 10.1016/s1097-2765(00)80159-8. [DOI] [PubMed] [Google Scholar]
  55. Weissenhorn W., Dessen A., Harrison S. C., Skehel J. J., Wiley D. C. Atomic structure of the ectodomain from HIV-1 gp41. Nature. 1997 May 22;387(6631):426–430. doi: 10.1038/387426a0. [DOI] [PubMed] [Google Scholar]
  56. White J. M., Wilson I. A. Anti-peptide antibodies detect steps in a protein conformational change: low-pH activation of the influenza virus hemagglutinin. J Cell Biol. 1987 Dec;105(6 Pt 2):2887–2896. doi: 10.1083/jcb.105.6.2887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. White J., Helenius A., Gething M. J. Haemagglutinin of influenza virus expressed from a cloned gene promotes membrane fusion. Nature. 1982 Dec 16;300(5893):658–659. doi: 10.1038/300658a0. [DOI] [PubMed] [Google Scholar]
  58. White J., Kielian M., Helenius A. Membrane fusion proteins of enveloped animal viruses. Q Rev Biophys. 1983 May;16(2):151–195. doi: 10.1017/s0033583500005072. [DOI] [PubMed] [Google Scholar]
  59. Wilson I. A., Skehel J. J., Wiley D. C. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature. 1981 Jan 29;289(5796):366–373. doi: 10.1038/289366a0. [DOI] [PubMed] [Google Scholar]
  60. Zimmerberg J., Blumenthal R., Sarkar D. P., Curran M., Morris S. J. Restricted movement of lipid and aqueous dyes through pores formed by influenza hemagglutinin during cell fusion. J Cell Biol. 1994 Dec;127(6 Pt 2):1885–1894. doi: 10.1083/jcb.127.6.1885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. de Lima M. C., Ramalho-Santos J., Flasher D., Slepushkin V. A., Nir S., Düzgüneş N. Target cell membrane sialic acid modulates both binding and fusion activity of influenza virus. Biochim Biophys Acta. 1995 Jun 14;1236(2):323–330. doi: 10.1016/0005-2736(95)00067-d. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES