Abstract
Carbohydrate ligands are important mediators of biomolecular recognition. Microcalorimetry has found the complex-type N-linked glycan core pentasaccharide beta-GlcNAc-(1-->2)-alpha-Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man-(1-->6)]-Man to bind to the lectin, Concanavalin A, with almost the same affinity as the trimannoside, Man-alpha-(1-->6)-[Man-alpha-(1-->3)]-Man. Recent determination of the structure of the pentasaccharide complex found a glycosidic linkage psi torsion angle to be distorted by 50 degrees from the NMR solution value and perturbation of some key mannose-protein interactions observed in the structures of the mono- and trimannoside complexes. To unravel the free energy contributions to binding and to determine the structural basis for this degeneracy, we present the results of a series of nanosecond molecular dynamics simulations, coupled to analysis via the recently developed MM-GB/SA approach (Srinivasan et al., J. Am. Chem. Soc. 1998, 120:9401-9409). These calculations indicate that the strength of key mannose-protein interactions at the monosaccharide site is preserved in both the oligosaccharides. Although distortion of the pentasaccharide is significant, the principal factor in reduced binding is incomplete offset of ligand and protein desolvation due to poorly matched polar interactions. This analysis implies that, although Concanavalin A tolerates the additional 6 arm GlcNAc present in the pentasaccharide, it does not serve as a key recognition determinant.
Full Text
The Full Text of this article is available as a PDF (186.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ajay, Murcko M. A. Computational methods to predict binding free energy in ligand-receptor complexes. J Med Chem. 1995 Dec 22;38(26):4953–4967. doi: 10.1021/jm00026a001. [DOI] [PubMed] [Google Scholar]
- Bouckaert J., Hamelryck T. W., Wyns L., Loris R. The crystal structures of Man(alpha1-3)Man(alpha1-O)Me and Man(alpha1-6)Man(alpha1-O)Me in complex with concanavalin A. J Biol Chem. 1999 Oct 8;274(41):29188–29195. doi: 10.1074/jbc.274.41.29188. [DOI] [PubMed] [Google Scholar]
- Bradbrook G. M., Forshaw J. R., Pérez S. Structure/thermodynamics relationships of lectin-saccharide complexes: the Erythrina corallodendron case. Eur J Biochem. 2000 Jul;267(14):4545–4555. doi: 10.1046/j.1432-1327.2000.01505.x. [DOI] [PubMed] [Google Scholar]
- Brisson J. R., Carver J. P. Solution conformation of alpha D(1-3)- and alpha D(1-6)-linked oligomannosides using proton nuclear magnetic resonance. Biochemistry. 1983 Mar 15;22(6):1362–1368. doi: 10.1021/bi00275a007. [DOI] [PubMed] [Google Scholar]
- Cheatham T. E., 3rd, Srinivasan J., Case D. A., Kollman P. A. Molecular dynamics and continuum solvent studies of the stability of polyG-polyC and polyA-polyT DNA duplexes in solution. J Biomol Struct Dyn. 1998 Oct;16(2):265–280. doi: 10.1080/07391102.1998.10508245. [DOI] [PubMed] [Google Scholar]
- Cumming D. A., Carver J. P. Reevaluation of rotamer populations for 1,6 linkages: reconciliation with potential energy calculations. Biochemistry. 1987 Oct 20;26(21):6676–6683. doi: 10.1021/bi00395a017. [DOI] [PubMed] [Google Scholar]
- Cumming D. A., Dime D. S., Grey A. A., Krepinsky J. J., Carver J. P. Specific deuteration of a trimannoside confirms the existence of a disputed interresidue nuclear Overhauser enhancement. J Biol Chem. 1986 Mar 5;261(7):3208–3213. [PubMed] [Google Scholar]
- Derewenda Z., Yariv J., Helliwell J. R., Kalb A. J., Dodson E. J., Papiz M. Z., Wan T., Campbell J. The structure of the saccharide-binding site of concanavalin A. EMBO J. 1989 Aug;8(8):2189–2193. doi: 10.1002/j.1460-2075.1989.tb08341.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujii S., Nishiura T., Nishikawa A., Miura R., Taniguchi N. Structural heterogeneity of sugar chains in immunoglobulin G. Conformation of immunoglobulin G molecule and substrate specificities of glycosyltransferases. J Biol Chem. 1990 Apr 15;265(11):6009–6018. [PubMed] [Google Scholar]
- Homans S. W., Dwek R. A., Rademacher T. W. Tertiary structure in N-linked oligosaccharides. Biochemistry. 1987 Oct 6;26(20):6553–6560. doi: 10.1021/bi00394a040. [DOI] [PubMed] [Google Scholar]
- Imberty A., Delage M. M., Bourne Y., Cambillau C., Pérez S. Data bank of three-dimensional structures of disaccharides: Part II, N-acetyllactosaminic type N-glycans. Comparison with the crystal structure of a biantennary octasaccharide. Glycoconj J. 1991 Dec;8(6):456–483. doi: 10.1007/BF00769847. [DOI] [PubMed] [Google Scholar]
- Kuhn B., Kollman P. A. Binding of a diverse set of ligands to avidin and streptavidin: an accurate quantitative prediction of their relative affinities by a combination of molecular mechanics and continuum solvent models. J Med Chem. 2000 Oct 5;43(20):3786–3791. doi: 10.1021/jm000241h. [DOI] [PubMed] [Google Scholar]
- Lasky L. A. Selectins: interpreters of cell-specific carbohydrate information during inflammation. Science. 1992 Nov 6;258(5084):964–969. doi: 10.1126/science.1439808. [DOI] [PubMed] [Google Scholar]
- Lee M. R., Duan Y., Kollman P. A. Use of MM-PB/SA in estimating the free energies of proteins: application to native, intermediates, and unfolded villin headpiece. Proteins. 2000 Jun 1;39(4):309–316. [PubMed] [Google Scholar]
- Lis Halina, Sharon Nathan. Lectins: Carbohydrate-Specific Proteins That Mediate Cellular Recognition. Chem Rev. 1998 Apr 2;98(2):637–674. doi: 10.1021/cr940413g. [DOI] [PubMed] [Google Scholar]
- Loris R., Maes D., Poortmans F., Wyns L., Bouckaert J. A structure of the complex between concanavalin A and methyl-3,6-di-O-(alpha-D-mannopyranosyl)-alpha-D-mannopyranoside reveals two binding modes. J Biol Chem. 1996 Nov 29;271(48):30614–30618. doi: 10.1074/jbc.271.48.30614. [DOI] [PubMed] [Google Scholar]
- Loris R., Stas P. P., Wyns L. Conserved waters in legume lectin crystal structures. The importance of bound water for the sequence-structure relationship within the legume lectin family. J Biol Chem. 1994 Oct 28;269(43):26722–26733. [PubMed] [Google Scholar]
- Mandal D. K., Kishore N., Brewer C. F. Thermodynamics of lectin-carbohydrate interactions. Titration microcalorimetry measurements of the binding of N-linked carbohydrates and ovalbumin to concanavalin A. Biochemistry. 1994 Feb 8;33(5):1149–1156. doi: 10.1021/bi00171a014. [DOI] [PubMed] [Google Scholar]
- Moothoo D. N., Canan B., Field R. A., Naismith J. H. Man alpha1-2 Man alpha-OMe-concanavalin A complex reveals a balance of forces involved in carbohydrate recognition. Glycobiology. 1999 Jun;9(6):539–545. doi: 10.1093/glycob/9.6.539. [DOI] [PubMed] [Google Scholar]
- Moothoo D. N., Naismith J. H. Concanavalin A distorts the beta-GlcNAc-(1-->2)-Man linkage of beta-GlcNAc-(1-->2)-alpha-Man-(1-->3)-[beta-GlcNAc-(1-->2)-alpha-Man- (1-->6)]-Man upon binding. Glycobiology. 1998 Feb;8(2):173–181. doi: 10.1093/glycob/8.2.173. [DOI] [PubMed] [Google Scholar]
- Naismith J. H., Emmerich C., Habash J., Harrop S. J., Helliwell J. R., Hunter W. N., Raftery J., Kalb A. J., Yariv J. Refined structure of concanavalin A complexed with methyl alpha-D-mannopyranoside at 2.0 A resolution and comparison with the saccharide-free structure. Acta Crystallogr D Biol Crystallogr. 1994 Nov 1;50(Pt 6):847–858. doi: 10.1107/S0907444994005287. [DOI] [PubMed] [Google Scholar]
- Naismith J. H., Field R. A. Structural basis of trimannoside recognition by concanavalin A. J Biol Chem. 1996 Jan 12;271(2):972–976. doi: 10.1074/jbc.271.2.972. [DOI] [PubMed] [Google Scholar]
- Parkinson C. I., Cooper M. D., Hewitt W. T., Hillier I. H. MAVIS: an interactive visualization tool for computational chemistry calculations in a distributed networked environment. Pac Symp Biocomput. 1998:189–200. [PubMed] [Google Scholar]
- Pathiaseril A., Woods R. J. Relative energies of binding for antibody-carbohydrate-antigen complexes computed from free-energy simulations. J Am Chem Soc. 2000 Jan 19;122(2):331–338. doi: 10.1021/ja9914994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peumans W. J., van Damme E. J. The role of lectins in plant defence. Histochem J. 1995 Apr;27(4):253–271. doi: 10.1007/BF00398968. [DOI] [PubMed] [Google Scholar]
- Reyes C. M., Kollman P. A. Structure and thermodynamics of RNA-protein binding: using molecular dynamics and free energy analyses to calculate the free energies of binding and conformational change. J Mol Biol. 2000 Apr 14;297(5):1145–1158. doi: 10.1006/jmbi.2000.3629. [DOI] [PubMed] [Google Scholar]
- Sanner M. F., Olson A. J., Spehner J. C. Reduced surface: an efficient way to compute molecular surfaces. Biopolymers. 1996 Mar;38(3):305–320. doi: 10.1002/(SICI)1097-0282(199603)38:3%3C305::AID-BIP4%3E3.0.CO;2-Y. [DOI] [PubMed] [Google Scholar]
- Schmidt T., Zörnig M., Beneke R., Möröy T. MoMuLV proviral integrations identified by Sup-F selection in tumors from infected myc/pim bitransgenic mice correlate with activation of the gfi-1 gene. Nucleic Acids Res. 1996 Jul 1;24(13):2528–2534. doi: 10.1093/nar/24.13.2528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schwarz F. P., Puri K. D., Bhat R. G., Surolia A. Thermodynamics of monosaccharide binding to concanavalin A, pea (Pisum sativum) lectin, and lentil (Lens culinaris) lectin. J Biol Chem. 1993 Apr 15;268(11):7668–7677. [PubMed] [Google Scholar]
- Tara S., Straatsma T. P., McCammon J. A. Mouse acetylcholinesterase unliganded and in complex with huperzine A: a comparison of molecular dynamics simulations. Biopolymers. 1999 Jul;50(1):35–43. doi: 10.1002/(SICI)1097-0282(199907)50:1<35::AID-BIP4>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
- Weis W. I., Drickamer K. Structural basis of lectin-carbohydrate recognition. Annu Rev Biochem. 1996;65:441–473. doi: 10.1146/annurev.bi.65.070196.002301. [DOI] [PubMed] [Google Scholar]
- Williams B. A., Chervenak M. C., Toone E. J. Energetics of lectin-carbohydrate binding. A microcalorimetric investigation of concanavalin A-oligomannoside complexation. J Biol Chem. 1992 Nov 15;267(32):22907–22911. [PubMed] [Google Scholar]
- Woods R. J., Pathiaseril A., Wormald M. R., Edge C. J., Dwek R. A. The high degree of internal flexibility observed for an oligomannose oligosaccharide does not alter the overall topology of the molecule. Eur J Biochem. 1998 Dec 1;258(2):372–386. doi: 10.1046/j.1432-1327.1998.2580372.x. [DOI] [PubMed] [Google Scholar]