Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Sep;81(3):1536–1546. doi: 10.1016/S0006-3495(01)75807-9

Thermodynamic effects of the hydrophobic surfactant proteins on the early adsorption of pulmonary surfactant.

V Schram 1, S B Hall 1
PMCID: PMC1301631  PMID: 11509366

Abstract

We determined the influence of the two hydrophobic proteins, SP-B and SP-C, on the thermodynamic barriers that limit adsorption of pulmonary surfactant to the air-water interface. We compared the temperature and concentration dependence of adsorption, measured by monitoring surface tension, between calf lung surfactant extract (CLSE) and the complete set of neutral and phospholipids (N&PL) without the proteins. Three stages generally characterized the various adsorption isotherms: an initial delay during which surface tension remained constant, a fall in surface tension at decreasing rates, and, for experiments that reached approximately 40 mN/m, a late acceleration of the fall in surface tension to approximately 25 mN/m. For the initial change in surface tension, the surfactant proteins accelerated adsorption for CLSE relative to N&PL by more than ten-fold, reducing the Gibbs free energy of transition (DeltaG(O)) from 119 to 112 kJ/mole. For the lipids alone in N&PL, the enthalpy of transition (DeltaH(O), 54 kJ/mole) and entropy (-T. DeltaS, 65 kJ/mole at 37 degrees C) made roughly equal contributions to DeltaG(O). The proteins in CLSE had little effect on -T. DeltaS(O) (68 kJ/mole), but lowered DeltaG(O) for CLSE by reducing DeltaH(O) (44 kJ/mole). Models of the detailed mechanisms by which the proteins facilitate adsorption must meet these thermodynamic constraints.

Full Text

The Full Text of this article is available as a PDF (546.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arjomaa P., Hallman M. Purification of a hydrophobic surfactant peptide using high-performance liquid chromatography. Anal Biochem. 1988 May 15;171(1):207–212. doi: 10.1016/0003-2697(88)90143-1. [DOI] [PubMed] [Google Scholar]
  2. Chernomordik L. V., Leikina E., Kozlov M. M., Frolov V. A., Zimmerberg J. Structural intermediates in influenza haemagglutinin-mediated fusion. Mol Membr Biol. 1999 Jan-Mar;16(1):33–42. doi: 10.1080/096876899294733. [DOI] [PubMed] [Google Scholar]
  3. Chernomordik L. V., Melikyan G. B., Chizmadzhev Y. A. Biomembrane fusion: a new concept derived from model studies using two interacting planar lipid bilayers. Biochim Biophys Acta. 1987 Oct 5;906(3):309–352. doi: 10.1016/0304-4157(87)90016-5. [DOI] [PubMed] [Google Scholar]
  4. Hall S. B., Venkitaraman A. R., Whitsett J. A., Holm B. A., Notter R. H. Importance of hydrophobic apoproteins as constituents of clinical exogenous surfactants. Am Rev Respir Dis. 1992 Jan;145(1):24–30. doi: 10.1164/ajrccm/145.1.24. [DOI] [PubMed] [Google Scholar]
  5. Hall S. B., Wang Z., Notter R. H. Separation of subfractions of the hydrophobic components of calf lung surfactant. J Lipid Res. 1994 Aug;35(8):1386–1394. [PubMed] [Google Scholar]
  6. Hawgood S., Benson B. J., Schilling J., Damm D., Clements J. A., White R. T. Nucleotide and amino acid sequences of pulmonary surfactant protein SP 18 and evidence for cooperation between SP 18 and SP 28-36 in surfactant lipid adsorption. Proc Natl Acad Sci U S A. 1987 Jan;84(1):66–70. doi: 10.1073/pnas.84.1.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ikegami M., Korfhagen T. R., Whitsett J. A., Bruno M. D., Wert S. E., Wada K., Jobe A. H. Characteristics of surfactant from SP-A-deficient mice. Am J Physiol. 1998 Aug;275(2 Pt 1):L247–L254. doi: 10.1152/ajplung.1998.275.2.L247. [DOI] [PubMed] [Google Scholar]
  8. Kaplan R. S., Pedersen P. L. Sensitive protein assay in presence of high levels of lipid. Methods Enzymol. 1989;172:393–399. doi: 10.1016/s0076-6879(89)72025-5. [DOI] [PubMed] [Google Scholar]
  9. King R. J., Clements J. A. Surface active materials from dog lung. 3. Thermal analysis. Am J Physiol. 1972 Sep;223(3):727–733. doi: 10.1152/ajplegacy.1972.223.3.727. [DOI] [PubMed] [Google Scholar]
  10. Korfhagen T. R., Bruno M. D., Ross G. F., Huelsman K. M., Ikegami M., Jobe A. H., Wert S. E., Stripp B. R., Morris R. E., Glasser S. W. Altered surfactant function and structure in SP-A gene targeted mice. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9594–9599. doi: 10.1073/pnas.93.18.9594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Krüger P., Schalke M., Wang Z., Notter R. H., Dluhy R. A., Lösche M. Effect of hydrophobic surfactant peptides SP-B and SP-C on binary phospholipid monolayers. I. Fluorescence and dark-field microscopy. Biophys J. 1999 Aug;77(2):903–914. doi: 10.1016/S0006-3495(99)76941-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lipp M. M., Lee K. Y., Zasadzinski J. A., Waring A. J. Phase and morphology changes in lipid monolayers induced by SP-B protein and its amino-terminal peptide. Science. 1996 Aug 30;273(5279):1196–1199. doi: 10.1126/science.273.5279.1196. [DOI] [PubMed] [Google Scholar]
  13. Longo M. L., Bisagno A. M., Zasadzinski J. A., Bruni R., Waring A. J. A function of lung surfactant protein SP-B. Science. 1993 Jul 23;261(5120):453–456. doi: 10.1126/science.8332910. [DOI] [PubMed] [Google Scholar]
  14. Morrow M. R., Pérez-Gil J., Simatos G., Boland C., Stewart J., Absolom D., Sarin V., Keough K. M. Pulmonary surfactant-associated protein SP-B has little effect on acyl chains in dipalmitoylphosphatidylcholine dispersions. Biochemistry. 1993 Apr 27;32(16):4397–4402. doi: 10.1021/bi00067a032. [DOI] [PubMed] [Google Scholar]
  15. Nogee L. M. Genetics of the hydrophobic surfactant proteins. Biochim Biophys Acta. 1998 Nov 19;1408(2-3):323–333. doi: 10.1016/s0925-4439(98)00078-7. [DOI] [PubMed] [Google Scholar]
  16. Notter R. H., Finkelstein J. N., Taubold R. D. Comparative adsorption of natural lung surfactant, extracted phospholipids, and artificial phospholipid mixtures to the air-water interface. Chem Phys Lipids. 1983 Jul;33(1):67–80. doi: 10.1016/0009-3084(83)90009-9. [DOI] [PubMed] [Google Scholar]
  17. Oosterlaken-Dijksterhuis M. A., Haagsman H. P., van Golde L. M., Demel R. A. Characterization of lipid insertion into monomolecular layers mediated by lung surfactant proteins SP-B and SP-C. Biochemistry. 1991 Nov 12;30(45):10965–10971. doi: 10.1021/bi00109a022. [DOI] [PubMed] [Google Scholar]
  18. Oosterlaken-Dijksterhuis M. A., Haagsman H. P., van Golde L. M., Demel R. A. Interaction of lipid vesicles with monomolecular layers containing lung surfactant proteins SP-B or SP-C. Biochemistry. 1991 Aug 20;30(33):8276–8281. doi: 10.1021/bi00247a024. [DOI] [PubMed] [Google Scholar]
  19. Perkins W. R., Dause R. B., Parente R. A., Minchey S. R., Neuman K. C., Gruner S. M., Taraschi T. F., Janoff A. S. Role of lipid polymorphism in pulmonary surfactant. Science. 1996 Jul 19;273(5273):330–332. doi: 10.1126/science.273.5273.330. [DOI] [PubMed] [Google Scholar]
  20. Pérez-Gil J., Tucker J., Simatos G., Keough K. M. Interfacial adsorption of simple lipid mixtures combined with hydrophobic surfactant protein from pig lung. Biochem Cell Biol. 1992 May;70(5):332–338. doi: 10.1139/o92-051. [DOI] [PubMed] [Google Scholar]
  21. SEARCY R. L., BERGQUIST L. M. A new color reaction for the quantitation of serum cholesterol. Clin Chim Acta. 1960 Mar;5:192–199. doi: 10.1016/0009-8981(60)90035-8. [DOI] [PubMed] [Google Scholar]
  22. Schürch S., Qanbar R., Bachofen H., Possmayer F. The surface-associated surfactant reservoir in the alveolar lining. Biol Neonate. 1995;67 (Suppl 1):61–76. doi: 10.1159/000244207. [DOI] [PubMed] [Google Scholar]
  23. Taneva S., Keough K. M. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: I. Monolayers of pulmonary surfactant protein SP-B and phospholipids. Biophys J. 1994 Apr;66(4):1137–1148. doi: 10.1016/S0006-3495(94)80895-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Taneva S., Keough K. M. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: II. Monolayers of pulmonary surfactant protein SP-C and phospholipids. Biophys J. 1994 Apr;66(4):1149–1157. doi: 10.1016/S0006-3495(94)80896-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Taneva S., Keough K. M. Pulmonary surfactant proteins SP-B and SP-C in spread monolayers at the air-water interface: III. Proteins SP-B plus SP-C with phospholipids in spread monolayers. Biophys J. 1994 Apr;66(4):1158–1166. doi: 10.1016/S0006-3495(94)80897-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tokieda K., Whitsett J. A., Clark J. C., Weaver T. E., Ikeda K., McConnell K. B., Jobe A. H., Ikegami M., Iwamoto H. S. Pulmonary dysfunction in neonatal SP-B-deficient mice. Am J Physiol. 1997 Oct;273(4 Pt 1):L875–L882. doi: 10.1152/ajplung.1997.273.4.L875. [DOI] [PubMed] [Google Scholar]
  27. Veldhuizen E. J., Haagsman H. P. Role of pulmonary surfactant components in surface film formation and dynamics. Biochim Biophys Acta. 2000 Aug 25;1467(2):255–270. doi: 10.1016/s0005-2736(00)00256-x. [DOI] [PubMed] [Google Scholar]
  28. Walters R. W., Jenq R. R., Hall S. B. Distinct steps in the adsorption of pulmonary surfactant to an air-liquid interface. Biophys J. 2000 Jan;78(1):257–266. doi: 10.1016/S0006-3495(00)76589-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wang Z., Hall S. B., Notter R. H. Dynamic surface activity of films of lung surfactant phospholipids, hydrophobic proteins, and neutral lipids. J Lipid Res. 1995 Jun;36(6):1283–1293. [PubMed] [Google Scholar]
  30. Wang Z., Hall S. B., Notter R. H. Roles of different hydrophobic constituents in the adsorption of pulmonary surfactant. J Lipid Res. 1996 Apr;37(4):790–798. [PubMed] [Google Scholar]
  31. Warr R. G., Hawgood S., Buckley D. I., Crisp T. M., Schilling J., Benson B. J., Ballard P. L., Clements J. A., White R. T. Low molecular weight human pulmonary surfactant protein (SP5): isolation, characterization, and cDNA and amino acid sequences. Proc Natl Acad Sci U S A. 1987 Nov;84(22):7915–7919. doi: 10.1073/pnas.84.22.7915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Whitsett J. A., Ohning B. L., Ross G., Meuth J., Weaver T., Holm B. A., Shapiro D. L., Notter R. H. Hydrophobic surfactant-associated protein in whole lung surfactant and its importance for biophysical activity in lung surfactant extracts used for replacement therapy. Pediatr Res. 1986 May;20(5):460–467. doi: 10.1203/00006450-198605000-00016. [DOI] [PubMed] [Google Scholar]
  33. Yu S. H., Possmayer F. Effect of pulmonary surfactant protein A and neutral lipid on accretion and organization of dipalmitoylphosphatidylcholine in surface films. J Lipid Res. 1996 Jun;37(6):1278–1288. [PubMed] [Google Scholar]
  34. Yu S. H., Possmayer F. Role of bovine pulmonary surfactant-associated proteins in the surface-active property of phospholipid mixtures. Biochim Biophys Acta. 1990 Oct 1;1046(3):233–241. doi: 10.1016/0005-2760(90)90236-q. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES