Abstract
Surfactin is a bacterial lipopeptide with powerful surfactant-like properties. High-sensitivity isothermal titration calorimetry was used to study the self association and membrane partitioning of surfactin. The critical micellar concentration (CMC), was 7.5 microM, the heat of micellization was endothermic with DeltaH(w-->m)(Su) = +4.0 kcal/mol, and the free energy of micellization DeltaG(O,w-->m)(Su) = -9.3 kcal/mol (25 degrees C; 100 mM NaCl; 10 mM TRIS, 1 mM EDTA; pH 8.5). The specific heat capacity of micellization was deduced from temperature dependence of DeltaH(w-->m)(Su) as DeltaC(w-->m)(P) = -250 +/- 10 cal/(mol.K). The data can be explained by combining the hydrophobicity of the fatty acyl chain with that of the hydrophobic amino acids. The membrane partition equilibrium was studied using small (30 nm) and large (100 nm) unilamellar POPC vesicles. At 25 degrees C, the partition coefficient, K, was (2.2 +/- 0.2) x 10(4) M(-1) for large vesicles leading to a free energy of DeltaG(O, w-->b)(Su) = -8.3 kcal/mol. The partition enthalpy was again endothermic, with DeltaH(w-->b)(Su) = 9 +/- 1 kcal/mol. The strong preference of surfactin for micelle formation over membrane insertion explains the high membrane-destabilizing activity of the peptide. For surfactin and a variety of non-ionic detergents, the surfactant-to-lipid ratio, inducing membrane solubilization, R(sat)(b), can be predicted by the simple relationship R(sat)(b) approximately K. CMC.
Full Text
The Full Text of this article is available as a PDF (273.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arima K., Kakinuma A., Tamura G. Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun. 1968 May 10;31(3):488–494. doi: 10.1016/0006-291x(68)90503-2. [DOI] [PubMed] [Google Scholar]
- Baker B. M., Murphy K. P. Prediction of binding energetics from structure using empirical parameterization. Methods Enzymol. 1998;295:294–315. doi: 10.1016/s0076-6879(98)95045-5. [DOI] [PubMed] [Google Scholar]
- Beschiaschvili G., Seelig J. Peptide binding to lipid bilayers. Nonclassical hydrophobic effect and membrane-induced pK shifts. Biochemistry. 1992 Oct 20;31(41):10044–10053. doi: 10.1021/bi00156a026. [DOI] [PubMed] [Google Scholar]
- Binford J. S., Jr, Wadsö I. Calorimetric determination of the partition coefficient for chlorpromazine hydrochloride in aqueous suspensions of dimyristoylphosphatidylcholine vesicles. J Biochem Biophys Methods. 1984 May;9(2):121–131. doi: 10.1016/0165-022x(84)90003-4. [DOI] [PubMed] [Google Scholar]
- Bonmatin J. M., Genest M., Petit M. C., Gincel E., Simorre J. P., Cornet B., Gallet X., Caille A., Labbé H., Vovelle F. Progress in multidimensional NMR investigations of peptide and protein 3-D structures in solution. From structure to functional aspects. Biochimie. 1992 Sep-Oct;74(9-10):825–836. doi: 10.1016/0300-9084(92)90065-m. [DOI] [PubMed] [Google Scholar]
- Béven L., Wróblewski H. Effect of natural amphipathic peptides on viability, membrane potential, cell shape and motility of mollicutes. Res Microbiol. 1997 Feb;148(2):163–175. doi: 10.1016/S0923-2508(97)87647-4. [DOI] [PubMed] [Google Scholar]
- Cooper A. Heat capacity of hydrogen-bonded networks: an alternative view of protein folding thermodynamics. Biophys Chem. 2000 May 31;85(1):25–39. doi: 10.1016/s0301-4622(00)00136-8. [DOI] [PubMed] [Google Scholar]
- Gazzara J. A., Phillips M. C., Lund-Katz S., Palgunachari M. N., Segrest J. P., Anantharamaiah G. M., Rodrigueza W. V., Snow J. W. Effect of vesicle size on their interaction with class A amphipathic helical peptides. J Lipid Res. 1997 Oct;38(10):2147–2154. [PubMed] [Google Scholar]
- Heerklotz H., Epand R. M. The enthalpy of acyl chain packing and the apparent water-accessible apolar surface area of phospholipids. Biophys J. 2001 Jan;80(1):271–279. doi: 10.1016/S0006-3495(01)76012-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heerklotz H., Seelig J. Correlation of membrane/water partition coefficients of detergents with the critical micelle concentration. Biophys J. 2000 May;78(5):2435–2440. doi: 10.1016/S0006-3495(00)76787-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heerklotz H., Seelig J. Titration calorimetry of surfactant-membrane partitioning and membrane solubilization. Biochim Biophys Acta. 2000 Nov 23;1508(1-2):69–85. doi: 10.1016/s0304-4157(00)00009-5. [DOI] [PubMed] [Google Scholar]
- Kameda Y., Oira S., Matsui K., Kanatomo S., Hase T. Antitumor activity of bacillus natto. V. Isolation and characterization of surfactin in the culture medium of Bacillus natto KMD 2311. Chem Pharm Bull (Tokyo) 1974 Apr;22(4):938–944. doi: 10.1248/cpb.22.938. [DOI] [PubMed] [Google Scholar]
- Kracht M., Rokos H., Ozel M., Kowall M., Pauli G., Vater J. Antiviral and hemolytic activities of surfactin isoforms and their methyl ester derivatives. J Antibiot (Tokyo) 1999 Jul;52(7):613–619. doi: 10.7164/antibiotics.52.613. [DOI] [PubMed] [Google Scholar]
- Lasch J. Interaction of detergents with lipid vesicles. Biochim Biophys Acta. 1995 Jul 17;1241(2):269–292. doi: 10.1016/0304-4157(95)00010-o. [DOI] [PubMed] [Google Scholar]
- MacDonald R. C., MacDonald R. I., Menco B. P., Takeshita K., Subbarao N. K., Hu L. R. Small-volume extrusion apparatus for preparation of large, unilamellar vesicles. Biochim Biophys Acta. 1991 Jan 30;1061(2):297–303. doi: 10.1016/0005-2736(91)90295-j. [DOI] [PubMed] [Google Scholar]
- Maget-Dana R., Thimon L., Peypoux F., Ptak M. Surfactin/iturin A interactions may explain the synergistic effect of surfactin on the biological properties of iturin A. Biochimie. 1992 Dec;74(12):1047–1051. doi: 10.1016/0300-9084(92)90002-v. [DOI] [PubMed] [Google Scholar]
- Muller N. Does hydrophobic hydration destabilize protein native structures? Trends Biochem Sci. 1992 Nov;17(11):459–463. doi: 10.1016/0968-0004(92)90488-u. [DOI] [PubMed] [Google Scholar]
- Peypoux F., Bonmatin J. M., Wallach J. Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol. 1999 May;51(5):553–563. doi: 10.1007/s002530051432. [DOI] [PubMed] [Google Scholar]
- Rosenberg E., Ron E. Z. High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol. 1999 Aug;52(2):154–162. doi: 10.1007/s002530051502. [DOI] [PubMed] [Google Scholar]
- Seelig J., Ganz P. Nonclassical hydrophobic effect in membrane binding equilibria. Biochemistry. 1991 Sep 24;30(38):9354–9359. doi: 10.1021/bi00102a031. [DOI] [PubMed] [Google Scholar]
- Seelig J. Titration calorimetry of lipid-peptide interactions. Biochim Biophys Acta. 1997 Mar 14;1331(1):103–116. doi: 10.1016/s0304-4157(97)00002-6. [DOI] [PubMed] [Google Scholar]
- Spolar R. S., Livingstone J. R., Record M. T., Jr Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water. Biochemistry. 1992 Apr 28;31(16):3947–3955. doi: 10.1021/bi00131a009. [DOI] [PubMed] [Google Scholar]
- Spuhler P., Anantharamaiah G. M., Segrest J. P., Seelig J. Binding of apolipoprotein A-I model peptides to lipid bilayers. Measurement of binding isotherms and peptide-lipid headgroup interactions. J Biol Chem. 1994 Sep 30;269(39):23904–23910. [PubMed] [Google Scholar]
- Vollenbroich D., Ozel M., Vater J., Kamp R. M., Pauli G. Mechanism of inactivation of enveloped viruses by the biosurfactant surfactin from Bacillus subtilis. Biologicals. 1997 Sep;25(3):289–297. doi: 10.1006/biol.1997.0099. [DOI] [PubMed] [Google Scholar]
- Vollenbroich D., Pauli G., Ozel M., Vater J. Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol. 1997 Jan;63(1):44–49. doi: 10.1128/aem.63.1.44-49.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wenk M. R., Alt T., Seelig A., Seelig J. Octyl-beta-D-glucopyranoside partitioning into lipid bilayers: thermodynamics of binding and structural changes of the bilayer. Biophys J. 1997 Apr;72(4):1719–1731. doi: 10.1016/S0006-3495(97)78818-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wieprecht T., Apostolov O., Beyermann M., Seelig J. Membrane binding and pore formation of the antibacterial peptide PGLa: thermodynamic and mechanistic aspects. Biochemistry. 2000 Jan 18;39(2):442–452. doi: 10.1021/bi992146k. [DOI] [PubMed] [Google Scholar]
- Wieprecht T, Apostolov O, Seelig J. Binding of the antibacterial peptide magainin 2 amide to small and large unilamellar vesicles. Biophys Chem. 2000 Jul 15;85(2-3):187–198. doi: 10.1016/s0301-4622(00)00120-4. [DOI] [PubMed] [Google Scholar]