Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Sep;81(3):1562–1569. doi: 10.1016/S0006-3495(01)75810-9

Fluorescent coumarin-labeled nucleotides to measure ADP release from actomyosin.

M R Webb 1, J E Corrie 1
PMCID: PMC1301634  PMID: 11509369

Abstract

Several coumarin-labeled nucleotides have been synthesized, based on 2'(3')-O-(2-aminoethyl)carbamoyl-ATP (edaATP). The fluorescent coumarins coupled with the free amino group are 7-diethylaminocoumarin-3-carboxylic acid (to give deac-edaATP), coumarin 343 (but-edaATP) and 7-ethylamino-8-bromocoumarin-3-carboxylic acid (mbc-edaATP). The carbamoyl linkage of these nucleotide analogs undergoes interconversion between 2'- and 3'-hydroxyl attachment very slowly, so that the 2'- and 3'-isomers were separated and stored with minimal equilibration. 3'-Deac-edaADP had fluorescence excitation and emission maxima at 430 nm and 477 nm, with a fluorescence quantum yield of 0.012. The equivalent data for 3'-but-edaADP are 445 nm, 494 nm, and 0.51, respectively, and for 3'-mbc-edaADP, 405 nm, 464 nm, and 0.62. The interaction with skeletal myosin subfragment 1 was measured in the absence and presence of actin. In each case the fluorescence was decreased when bound to subfragment 1, 3-fold for 3'-deac-edaADP, 7-fold for 3'-but-edaADP, and 11-fold for 3'-mbc-edaADP. Steady-state ATPase measurements and the kinetics of binding and release of nucleotides were similar to those reported for the natural nucleotide. Large fluorescence changes could be observed for the release of these analogs from actomyosin subfragment 1, enabling a direct measurement of the kinetics of this process. In the case of 3'-deac-edaADP a rate constant of 474 s(-1) was measured (at pH 7.0, 20 degrees C, and low ionic strength).

Full Text

The Full Text of this article is available as a PDF (90.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brune M., Hunter J. L., Corrie J. E., Webb M. R. Direct, real-time measurement of rapid inorganic phosphate release using a novel fluorescent probe and its application to actomyosin subfragment 1 ATPase. Biochemistry. 1994 Jul 12;33(27):8262–8271. doi: 10.1021/bi00193a013. [DOI] [PubMed] [Google Scholar]
  2. Brune M., Hunter J. L., Howell S. A., Martin S. R., Hazlett T. L., Corrie J. E., Webb M. R. Mechanism of inorganic phosphate interaction with phosphate binding protein from Escherichia coli. Biochemistry. 1998 Jul 21;37(29):10370–10380. doi: 10.1021/bi9804277. [DOI] [PubMed] [Google Scholar]
  3. Cremo C. R., Geeves M. A. Interaction of actin and ADP with the head domain of smooth muscle myosin: implications for strain-dependent ADP release in smooth muscle. Biochemistry. 1998 Feb 17;37(7):1969–1978. doi: 10.1021/bi9722406. [DOI] [PubMed] [Google Scholar]
  4. Cremo C. R., Neuron J. M., Yount R. G. Interaction of myosin subfragment 1 with fluorescent ribose-modified nucleotides. A comparison of vanadate trapping and SH1-SH2 cross-linking. Biochemistry. 1990 Apr 3;29(13):3309–3319. doi: 10.1021/bi00465a023. [DOI] [PubMed] [Google Scholar]
  5. Eccleston J. F., Moore K. J., Brownbridge G. G., Webb M. R., Lowe P. N. Fluorescence approaches to the study of the p21ras GTPase mechanism. Biochem Soc Trans. 1991 Apr;19(2):432–437. doi: 10.1042/bst0190432. [DOI] [PubMed] [Google Scholar]
  6. Geeves M. A. Dynamic interaction between actin and myosin subfragment 1 in the presence of ADP. Biochemistry. 1989 Jul 11;28(14):5864–5871. doi: 10.1021/bi00440a024. [DOI] [PubMed] [Google Scholar]
  7. Hazlett T. L., Moore K. J., Lowe P. N., Jameson D. M., Eccleston J. F. Solution dynamics of p21ras proteins bound with fluorescent nucleotides: a time-resolved fluorescence study. Biochemistry. 1993 Dec 14;32(49):13575–13583. doi: 10.1021/bi00212a025. [DOI] [PubMed] [Google Scholar]
  8. Hibberd M. G., Trentham D. R. Relationships between chemical and mechanical events during muscular contraction. Annu Rev Biophys Biophys Chem. 1986;15:119–161. doi: 10.1146/annurev.bb.15.060186.001003. [DOI] [PubMed] [Google Scholar]
  9. Hiratsuka T. New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzymes. Biochim Biophys Acta. 1983 Feb 15;742(3):496–508. doi: 10.1016/0167-4838(83)90267-4. [DOI] [PubMed] [Google Scholar]
  10. Hirshberg M., Henrick K., Haire L. L., Vasisht N., Brune M., Corrie J. E., Webb M. R. Crystal structure of phosphate binding protein labeled with a coumarin fluorophore, a probe for inorganic phosphate. Biochemistry. 1998 Jul 21;37(29):10381–10385. doi: 10.1021/bi980428z. [DOI] [PubMed] [Google Scholar]
  11. Ikebe M., Hartshorne D. J. Proteolysis of smooth muscle myosin by Staphylococcus aureus protease: preparation of heavy meromyosin and subfragment 1 with intact 20 000-dalton light chains. Biochemistry. 1985 Apr 23;24(9):2380–2387. doi: 10.1021/bi00330a038. [DOI] [PubMed] [Google Scholar]
  12. Lehrer S. S., Kerwar G. Intrinsic fluorescence of actin. Biochemistry. 1972 Mar 28;11(7):1211–1217. doi: 10.1021/bi00757a015. [DOI] [PubMed] [Google Scholar]
  13. Maeda M., Patel A. D., Hampton A. Formation of ribonucleotide 2',3'-cyclic carbonates during conversion of ribonucleoside 5'-phosphates to diphosphates and triphosphates by the phosphorimidazolidate procedure. Nucleic Acids Res. 1977 Aug;4(8):2843–2853. doi: 10.1093/nar/4.8.2843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Neal S. E., Eccleston J. F., Webb M. R. Hydrolysis of GTP by p21NRAS, the NRAS protooncogene product, is accompanied by a conformational change in the wild-type protein: use of a single fluorescent probe at the catalytic site. Proc Natl Acad Sci U S A. 1990 May;87(9):3562–3565. doi: 10.1073/pnas.87.9.3562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Oiwa K., Eccleston J. F., Anson M., Kikumoto M., Davis C. T., Reid G. P., Ferenczi M. A., Corrie J. E., Yamada A., Nakayama H. Comparative single-molecule and ensemble myosin enzymology: sulfoindocyanine ATP and ADP derivatives. Biophys J. 2000 Jun;78(6):3048–3071. doi: 10.1016/S0006-3495(00)76843-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rensland H., Lautwein A., Wittinghofer A., Goody R. S. Is there a rate-limiting step before GTP cleavage by H-ras p21? Biochemistry. 1991 Nov 19;30(46):11181–11185. doi: 10.1021/bi00110a023. [DOI] [PubMed] [Google Scholar]
  17. Siemankowski R. F., Wiseman M. O., White H. D. ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. Proc Natl Acad Sci U S A. 1985 Feb;82(3):658–662. doi: 10.1073/pnas.82.3.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith C. A., Rayment I. Active site comparisons highlight structural similarities between myosin and other P-loop proteins. Biophys J. 1996 Apr;70(4):1590–1602. doi: 10.1016/S0006-3495(96)79745-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Trentham D. R., Eccleston J. F., Bagshaw C. R. Kinetic analysis of ATPase mechanisms. Q Rev Biophys. 1976 May;9(2):217–281. doi: 10.1017/s0033583500002419. [DOI] [PubMed] [Google Scholar]
  20. Weeds A. G., Taylor R. S. Separation of subfragment-1 isoenzymes from rabbit skeletal muscle myosin. Nature. 1975 Sep 4;257(5521):54–56. doi: 10.1038/257054a0. [DOI] [PubMed] [Google Scholar]
  21. Woodward S. K., Eccleston J. F., Geeves M. A. Kinetics of the interaction of 2'(3')-O-(N-methylanthraniloyl)-ATP with myosin subfragment 1 and actomyosin subfragment 1: characterization of two acto-S1-ADP complexes. Biochemistry. 1991 Jan 15;30(2):422–430. doi: 10.1021/bi00216a017. [DOI] [PubMed] [Google Scholar]
  22. Xu G., Evans J. S. The application of "excitation sculpting" in the construction of selective one-dimensional homonuclear coherence-transfer experiments. J Magn Reson B. 1996 May;111(2):183–185. doi: 10.1006/jmrb.1996.0079. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES