Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Sep;81(3):1580–1587. doi: 10.1016/S0006-3495(01)75812-2

Silver(I) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis.

H Arakawa 1, J F Neault 1, H A Tajmir-Riahi 1
PMCID: PMC1301636  PMID: 11509371

Abstract

Ag(I) is a strong nucleic acids binder and forms several complexes with DNA such as types I, II, and III. However, the details of the binding mode of silver(I) in the Ag-polynucleotides remains unknown. Therefore, it was of interest to examine the binding of Ag(I) with calf-thymus DNA and bakers yeast RNA in aqueous solutions at pH 7.1-6.6 with constant concentration of DNA or RNA and various concentrations of Ag(I). Fourier transform infrared spectroscopy and capillary electrophoresis were used to analyze the Ag(I) binding mode, the binding constant, and the polynucleotides' structural changes in the Ag-DNA and Ag-RNA complexes. The spectroscopic results showed that in the type I complex formed with DNA, Ag(I) binds to guanine N7 at low cation concentration (r = 1/80) and adenine N7 site at higher concentrations (r = 1/20 to 1/10), but not to the backbone phosphate group. At r = 1/2, type II complexes formed with DNA in which Ag(I) binds to the G-C and A-T base pairs. On the other hand, Ag(I) binds to the guanine N7 atom but not to the adenine and the backbone phosphate group in the Ag-RNA complexes. Although a minor alteration of the sugar-phosphate geometry was observed, DNA remained in the B-family structure, whereas RNA retained its A conformation. Scatchard analysis following capillary electrophoresis showed two binding sites for the Ag-DNA complexes with K(1) = 8.3 x 10(4) M(-1) for the guanine and K(2) = 1.5 x 10(4) M(-1) for the adenine bases. On the other hand, Ag-RNA adducts showed one binding site with K = 1.5 x 10(5) M(-1) for the guanine bases.

Full Text

The Full Text of this article is available as a PDF (108.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arakawa H., Ahmad R., Naoui M., Tajmir-Riahi H. A. A comparative study of calf thymus DNA binding to Cr(III) and Cr(VI) ions. Evidence for the guanine N-7-chromium-phosphate chelate formation. J Biol Chem. 2000 Apr 7;275(14):10150–10153. doi: 10.1074/jbc.275.14.10150. [DOI] [PubMed] [Google Scholar]
  2. Chen M. C., Thomas G. J., Jr Raman spectral studies of nucleic acids. XI. Conformations of yeast tRNAPhe and E. coli ribosomal RNA in aqueous solution and in the solid state. Biopolymers. 1974;13(3):615–626. doi: 10.1002/bip.1974.360130313. [DOI] [PubMed] [Google Scholar]
  3. Dattagupta N., Crothers D. M. Solution structural studies of the Ag(I)-DNA complex. Nucleic Acids Res. 1981 Jun 25;9(12):2971–2985. doi: 10.1093/nar/9.12.2971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DiRico D. E., Jr, Keller P. B., Hartman K. A. The infrared spectrum and structure of the type I complex of silver and DNA. Nucleic Acids Res. 1985 Jan 11;13(1):251–260. doi: 10.1093/nar/13.1.251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Duguid J. G., Bloomfield V. A., Benevides J. M., Thomas G. J., Jr Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+. Biophys J. 1995 Dec;69(6):2623–2641. doi: 10.1016/S0006-3495(95)80133-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Duguid J., Bloomfield V. A., Benevides J., Thomas G. J., Jr Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd. Biophys J. 1993 Nov;65(5):1916–1928. doi: 10.1016/S0006-3495(93)81263-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Foulds G. J., Etzkorn F. A. A capillary electrophoresis mobility shift assay for protein-DNA binding affinities free in solution. Nucleic Acids Res. 1998 Sep 15;26(18):4304–4305. doi: 10.1093/nar/26.18.4304. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Guszczynski T., Copeland T. D. A binding shift assay for the zinc-bound and zinc-free HIV-1 nucleocapsid protein by capillary electrophoresis. Anal Biochem. 1998 Jul 1;260(2):212–217. doi: 10.1006/abio.1998.2694. [DOI] [PubMed] [Google Scholar]
  9. Izatt R. M., Christensen J. J., Rytting J. H. Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and nucleotides. Chem Rev. 1971 Oct;71(5):439–481. doi: 10.1021/cr60273a002. [DOI] [PubMed] [Google Scholar]
  10. Keller P. B., Hartman K. A. Structural forms, stabilities and transitions in double-helical poly(dG-dC) as a function of hydration and NaCl content. An infrared spectroscopic study. Nucleic Acids Res. 1986 Oct 24;14(20):8167–8182. doi: 10.1093/nar/14.20.8167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kitamura H., Kondo Y., Sakairi N., Nishi N. Preparation and characterization of antibacterial alginate film containing DNA as a carrier of silver ion. Nucleic Acids Symp Ser. 1997;(37):273–274. [PubMed] [Google Scholar]
  12. Klotz I. M., Hunston D. L. Properties of graphical representations of multiple classes of binding sites. Biochemistry. 1971 Aug 3;10(16):3065–3069. doi: 10.1021/bi00792a013. [DOI] [PubMed] [Google Scholar]
  13. Klotz I. M. Numbers of receptor sites from Scatchard graphs: facts and fantasies. Science. 1982 Sep 24;217(4566):1247–1249. doi: 10.1126/science.6287580. [DOI] [PubMed] [Google Scholar]
  14. Langlais M., Tajmir-Riahi H. A., Savoie R. Raman spectroscopic study of the effects of Ca2+, Mg2+, Zn2+, and Cd2+ ions on calf thymus DNA: binding sites and conformational changes. Biopolymers. 1990;30(7-8):743–752. doi: 10.1002/bip.360300709. [DOI] [PubMed] [Google Scholar]
  15. Li C., Martin L. M. A robust method for determining DNA binding constants using capillary zone electrophoresis. Anal Biochem. 1998 Oct 1;263(1):72–78. doi: 10.1006/abio.1998.2791. [DOI] [PubMed] [Google Scholar]
  16. Loprete D. M., Hartman K. A. Conditions for the stability of the B, C, and Z structural forms of poly(dG-dC) in the presence of lithium, potassium, magnesium, calcium, and zinc cations. Biochemistry. 1993 Apr 20;32(15):4077–4082. doi: 10.1021/bi00066a032. [DOI] [PubMed] [Google Scholar]
  17. Müller J., Sigel R. K., Lippert B. Heavy metal mutagenicity: insights from bioinorganic model chemistry. J Inorg Biochem. 2000 Apr;79(1-4):261–265. doi: 10.1016/s0162-0134(99)00179-8. [DOI] [PubMed] [Google Scholar]
  18. Neault J. F., Tajmir-Riahi H. A. Structural analysis of DNA-chlorophyll complexes by Fourier transform infrared difference spectroscopy. Biophys J. 1999 Apr;76(4):2177–2182. doi: 10.1016/S0006-3495(99)77372-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Prescott B., Steinmetz W., Thomas G. J., Jr Characterization of DNA structures by laser Raman spectroscopy. Biopolymers. 1984 Feb;23(2):235–256. doi: 10.1002/bip.360230206. [DOI] [PubMed] [Google Scholar]
  20. Shin Y. A., Eichhorn G. L. Induction of helicity in polyuridylic acid and polyinosinic acid by silver ions. Biopolymers. 1980 Mar;19(3):539–556. doi: 10.1002/bip.1980.360190308. [DOI] [PubMed] [Google Scholar]
  21. Tajmir-Riahi H. A., Langlais M., Savoie R. A laser Raman spectroscopic study of the interaction of calf-thymus DNA with Cu(II) and Pb(II) ions: metal ion binding and DNA conformational changes. Nucleic Acids Res. 1988 Jan 25;16(2):751–762. doi: 10.1093/nar/16.2.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tajmir-Riahi H. A., Naoui M., Ahmad R. The effects of Cu2+ and Pb2+ on the solution structure of calf thymus DNA: DNA condensation and denaturation studied by Fourier transform ir difference spectroscopy. Biopolymers. 1993 Dec;33(12):1819–1827. doi: 10.1002/bip.360331208. [DOI] [PubMed] [Google Scholar]
  23. Tajmir-Riahi H. A., Neault J. F., Naoui M. Does DNA acid fixation produce left-handed Z structure? FEBS Lett. 1995 Aug 14;370(1-2):105–108. doi: 10.1016/0014-5793(95)00802-g. [DOI] [PubMed] [Google Scholar]
  24. Thomas G. J., Jr, Chen M. C., Hartman K. A. Raman studies of nucleic acids. X. Conformational structures of Escherichia coli transfer RNAs in aqueous solution. Biochim Biophys Acta. 1973 Sep 28;324(1):37–49. doi: 10.1016/0005-2787(73)90248-7. [DOI] [PubMed] [Google Scholar]
  25. Xian J., Harrington M. G., Davidson E. H. DNA-protein binding assays from a single sea urchin egg: a high-sensitivity capillary electrophoresis method. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):86–90. doi: 10.1073/pnas.93.1.86. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. YAMANE T., DAVIDSON N. None on the spectra of the mercury (II) and silver (I) complexes of some polyribonucleotides and ribonucleic acid. Biochim Biophys Acta. 1962 May 14;55:780–782. doi: 10.1016/0006-3002(62)90858-2. [DOI] [PubMed] [Google Scholar]
  27. YAMANE T., DAVIDSON N. On the complexing of deoxyribonucleic acid by silver (I). Biochim Biophys Acta. 1962 May 14;55:609–621. doi: 10.1016/0006-3002(62)90839-9. [DOI] [PubMed] [Google Scholar]
  28. Yamada M., Kato K., Shindo K., Nomizu M., Sakairi N., Yamamoto H., Nishi N. Immobilization of DNA by UV irradiation and its utilization as functional materials. Nucleic Acids Symp Ser. 1999;(42):103–104. doi: 10.1093/nass/42.1.103. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES