Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Sep;81(3):1588–1599. doi: 10.1016/S0006-3495(01)75813-4

Significance of ligand tails for interaction with the minor groove of B-DNA.

B Wellenzohn 1, W Flader 1, R H Winger 1, A Hallbrucker 1, E Mayer 1, K R Liedl 1
PMCID: PMC1301637  PMID: 11509372

Abstract

Minor groove binding ligands are of great interest due to their extraordinary importance as transcription controlling drugs. We performed three molecular dynamics simulations of the unbound d(CGCGAATTCGCG)(2) dodecamer and its complexes with Hoechst33258 and Netropsin. The structural behavior of the piperazine tail of Hoechst33258, which has already been shown to be a contributor in sequence-specific recognition, was analyzed. The simulations also reveal that the tails of the ligands are able to influence the width of the minor groove. The groove width is even sensitive for conformational transitions of these tails, indicating a high adaptability of the minor groove. Furthermore, the ligands also exert an influence on the B(I)/B(II) backbone conformational substate behavior. All together these results are important for the understanding of the binding process of sequence-specific ligands.

Full Text

The Full Text of this article is available as a PDF (207.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bareket-Samish A., Cohen I., Haran T. E. Direct versus indirect readout in the interaction of the trp repressor with non-canonical binding sites. J Mol Biol. 1998 Apr 17;277(5):1071–1080. doi: 10.1006/jmbi.1998.1638. [DOI] [PubMed] [Google Scholar]
  2. Berman H. M. Crystal studies of B-DNA: the answers and the questions. Biopolymers. 1997;44(1):23–44. doi: 10.1002/(SICI)1097-0282(1997)44:1<23::AID-BIP3>3.0.CO;2-1. [DOI] [PubMed] [Google Scholar]
  3. Bewley C. A., Gronenborn A. M., Clore G. M. Minor groove-binding architectural proteins: structure, function, and DNA recognition. Annu Rev Biophys Biomol Struct. 1998;27:105–131. doi: 10.1146/annurev.biophys.27.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carrondo M. A., Coll M., Aymami J., Wang A. H., van der Marel G. A., van Boom J. H., Rich A. Binding of a Hoechst dye to d(CGCGATATCGCG) and its influence on the conformation of the DNA fragment. Biochemistry. 1989 Sep 19;28(19):7849–7859. doi: 10.1021/bi00445a047. [DOI] [PubMed] [Google Scholar]
  5. Cheatham T. E., 3rd, Cieplak P., Kollman P. A. A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J Biomol Struct Dyn. 1999 Feb;16(4):845–862. doi: 10.1080/07391102.1999.10508297. [DOI] [PubMed] [Google Scholar]
  6. Chen H., Liu X., Patel D. J. DNA bending and unwinding associated with actinomycin D antibiotics bound to partially overlapping sites on DNA. J Mol Biol. 1996 May 10;258(3):457–479. doi: 10.1006/jmbi.1996.0262. [DOI] [PubMed] [Google Scholar]
  7. Chen Y. Z., Prohofsky E. W. Normal mode calculation of a netropsin-DNA complex: effect of structural deformation on vibrational spectrum. Biopolymers. 1995 Jun;35(6):657–666. doi: 10.1002/bip.360350611. [DOI] [PubMed] [Google Scholar]
  8. Chiu T. K., Kaczor-Grzeskowiak M., Dickerson R. E. Absence of minor groove monovalent cations in the crosslinked dodecamer C-G-C-G-A-A-T-T-C-G-C-G. J Mol Biol. 1999 Sep 24;292(3):589–608. doi: 10.1006/jmbi.1999.3075. [DOI] [PubMed] [Google Scholar]
  9. Coll M., Aymami J., van der Marel G. A., van Boom J. H., Rich A., Wang A. H. Molecular structure of the netropsin-d(CGCGATATCGCG) complex: DNA conformation in an alternating AT segment. Biochemistry. 1989 Jan 10;28(1):310–320. doi: 10.1021/bi00427a042. [DOI] [PubMed] [Google Scholar]
  10. Dickerson R. E. DNA bending: the prevalence of kinkiness and the virtues of normality. Nucleic Acids Res. 1998 Apr 15;26(8):1906–1926. doi: 10.1093/nar/26.8.1906. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dickinson L. A., Gulizia R. J., Trauger J. W., Baird E. E., Mosier D. E., Gottesfeld J. M., Dervan P. B. Inhibition of RNA polymerase II transcription in human cells by synthetic DNA-binding ligands. Proc Natl Acad Sci U S A. 1998 Oct 27;95(22):12890–12895. doi: 10.1073/pnas.95.22.12890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Drew H. R., Dickerson R. E. Structure of a B-DNA dodecamer. III. Geometry of hydration. J Mol Biol. 1981 Sep 25;151(3):535–556. doi: 10.1016/0022-2836(81)90009-7. [DOI] [PubMed] [Google Scholar]
  13. Feig M., Pettitt B. M. Sodium and chlorine ions as part of the DNA solvation shell. Biophys J. 1999 Oct;77(4):1769–1781. doi: 10.1016/S0006-3495(99)77023-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fishleigh R. V., Fox K. R., Khalaf A. I., Pitt A. R., Scobie M., Suckling C. J., Urwin J., Waigh R. D., Young S. C. DNA binding, solubility, and partitioning characteristics of extended lexitropsins. J Med Chem. 2000 Aug 24;43(17):3257–3266. doi: 10.1021/jm990620e. [DOI] [PubMed] [Google Scholar]
  15. Fratini A. V., Kopka M. L., Drew H. R., Dickerson R. E. Reversible bending and helix geometry in a B-DNA dodecamer: CGCGAATTBrCGCG. J Biol Chem. 1982 Dec 25;257(24):14686–14707. [PubMed] [Google Scholar]
  16. Gehring W. J., Qian Y. Q., Billeter M., Furukubo-Tokunaga K., Schier A. F., Resendez-Perez D., Affolter M., Otting G., Wüthrich K. Homeodomain-DNA recognition. Cell. 1994 Jul 29;78(2):211–223. doi: 10.1016/0092-8674(94)90292-5. [DOI] [PubMed] [Google Scholar]
  17. Geierstanger B. H., Wemmer D. E. Complexes of the minor groove of DNA. Annu Rev Biophys Biomol Struct. 1995;24:463–493. doi: 10.1146/annurev.bb.24.060195.002335. [DOI] [PubMed] [Google Scholar]
  18. Giese K., Pagel J., Grosschedl R. Functional analysis of DNA bending and unwinding by the high mobility group domain of LEF-1. Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12845–12850. doi: 10.1073/pnas.94.24.12845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Goodsell D. S., Kopka M. L., Dickerson R. E. Refinement of netropsin bound to DNA: bias and feedback in electron density map interpretation. Biochemistry. 1995 Apr 18;34(15):4983–4993. doi: 10.1021/bi00015a009. [DOI] [PubMed] [Google Scholar]
  20. Gottesfeld J. M., Neely L., Trauger J. W., Baird E. E., Dervan P. B. Regulation of gene expression by small molecules. Nature. 1997 May 8;387(6629):202–205. doi: 10.1038/387202a0. [DOI] [PubMed] [Google Scholar]
  21. Ha Duong T., Zakrzewska K. Influence of drug binding on DNA flexibility: a normal mode analysis. J Biomol Struct Dyn. 1997 Jun;14(6):691–701. doi: 10.1080/07391102.1997.10508172. [DOI] [PubMed] [Google Scholar]
  22. Harshman K. D., Dervan P. B. Molecular recognition of B-DNA by Hoechst 33258. Nucleic Acids Res. 1985 Jul 11;13(13):4825–4835. doi: 10.1093/nar/13.13.4825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hartmann B., Lavery R. DNA structural forms. Q Rev Biophys. 1996 Dec;29(4):309–368. doi: 10.1017/s0033583500005874. [DOI] [PubMed] [Google Scholar]
  24. Ho S. N., Boyer S. H., Schreiber S. L., Danishefsky S. J., Crabtree G. R. Specific inhibition of formation of transcription complexes by a calicheamicin oligosaccharide: a paradigm for the development of transcriptional antagonists. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9203–9207. doi: 10.1073/pnas.91.20.9203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ketterlé C., Gabarro-Arpa J., Ouali M., Bouziane M., Auclair C., Helissey P., Giorgi-Renault S., Le Bret M. Binding of Net-Fla, a netropsin-flavin hybrid molecule, to DNA: molecular mechanics and dynamics studies in vacuo and in water solution. J Biomol Struct Dyn. 1996 Jun;13(6):963–977. doi: 10.1080/07391102.1996.10508911. [DOI] [PubMed] [Google Scholar]
  26. Kielkopf C. L., Baird E. E., Dervan P. B., Rees D. C. Structural basis for G.C recognition in the DNA minor groove. Nat Struct Biol. 1998 Feb;5(2):104–109. doi: 10.1038/nsb0298-104. [DOI] [PubMed] [Google Scholar]
  27. Kielkopf C. L., White S., Szewczyk J. W., Turner J. M., Baird E. E., Dervan P. B., Rees D. C. A structural basis for recognition of A.T and T.A base pairs in the minor groove of B-DNA. Science. 1998 Oct 2;282(5386):111–115. doi: 10.1126/science.282.5386.111. [DOI] [PubMed] [Google Scholar]
  28. Kopka M. L., Yoon C., Goodsell D., Pjura P., Dickerson R. E. The molecular origin of DNA-drug specificity in netropsin and distamycin. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1376–1380. doi: 10.1073/pnas.82.5.1376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lah J., Vesnaver G. Binding of distamycin A and netropsin to the 12mer DNA duplexes containing mixed AT.GC sequences with at most five or three successive AT base pairs. Biochemistry. 2000 Aug 8;39(31):9317–9326. doi: 10.1021/bi000748u. [DOI] [PubMed] [Google Scholar]
  30. Murray V., Martin R. F. Sequence specificity of 125I-labelled Hoechst 33258 damage in six closely related DNA sequences. J Mol Biol. 1988 Sep 5;203(1):63–73. doi: 10.1016/0022-2836(88)90091-5. [DOI] [PubMed] [Google Scholar]
  31. Norberto de Souza O., Ornstein R. L. Effect of warmup protocol and sampling time on convergence of molecular dynamics simulations of a DNA dodecamer using AMBER 4.1 and particle-mesh Ewald method. J Biomol Struct Dyn. 1997 Apr;14(5):607–611. doi: 10.1080/07391102.1997.10508160. [DOI] [PubMed] [Google Scholar]
  32. Nunn C. M., Garman E., Neidle S. Crystal structure of the DNA decamer d(CGCAATTGCG) complexed with the minor groove binding drug netropsin. Biochemistry. 1997 Apr 22;36(16):4792–4799. doi: 10.1021/bi9628228. [DOI] [PubMed] [Google Scholar]
  33. Park Y. W., Breslauer K. J. Drug binding to higher ordered DNA structures: netropsin complexation with a nucleic acid triple helix. Proc Natl Acad Sci U S A. 1992 Jul 15;89(14):6653–6657. doi: 10.1073/pnas.89.14.6653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Patel D. J. Antibiotic-DNA interactions: intermolecular nuclear Overhauser effects in the netropsin-d(C-G-C-G-A-A-T-T-C-G-C-G) complex in solution. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6424–6428. doi: 10.1073/pnas.79.21.6424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Perrée-Fauvet M., Gresh N. Structure and energetics in the complexes of a double-stranded B-DNA dodecamer with netropsin derivatives of a tricationic water-soluble porphyrin: a theoretical investigation. J Biomol Struct Dyn. 1994 Jun;11(6):1203–1224. doi: 10.1080/07391102.1994.10508064. [DOI] [PubMed] [Google Scholar]
  36. Pérez J. J., Portugal J. Molecular modelling study of changes induced by netropsin binding to nucleosome core particles. Nucleic Acids Res. 1990 Jul 11;18(13):3731–3737. doi: 10.1093/nar/18.13.3731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Quintana J. R., Lipanov A. A., Dickerson R. E. Low-temperature crystallographic analyses of the binding of Hoechst 33258 to the double-helical DNA dodecamer C-G-C-G-A-A-T-T-C-G-C-G. Biochemistry. 1991 Oct 22;30(42):10294–10306. doi: 10.1021/bi00106a030. [DOI] [PubMed] [Google Scholar]
  38. Ren J., Chaires J. B. Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry. 1999 Dec 7;38(49):16067–16075. doi: 10.1021/bi992070s. [DOI] [PubMed] [Google Scholar]
  39. Rentzeperis D., Marky L. A., Dwyer T. J., Geierstanger B. H., Pelton J. G., Wemmer D. E. Interaction of minor groove ligands to an AAATT/AATTT site: correlation of thermodynamic characterization and solution structure. Biochemistry. 1995 Mar 7;34(9):2937–2945. doi: 10.1021/bi00009a025. [DOI] [PubMed] [Google Scholar]
  40. Shui X., McFail-Isom L., Hu G. G., Williams L. D. The B-DNA dodecamer at high resolution reveals a spine of water on sodium. Biochemistry. 1998 Jun 9;37(23):8341–8355. doi: 10.1021/bi973073c. [DOI] [PubMed] [Google Scholar]
  41. Song Z., Antzutkin O. N., Lee Y. K., Shekar S. C., Rupprecht A., Levitt M. H. Conformational transitions of the phosphodiester backbone in native DNA: two-dimensional magic-angle-spinning 31P-NMR of DNA fibers. Biophys J. 1997 Sep;73(3):1539–1552. doi: 10.1016/S0006-3495(97)78186-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Spink N., Brown D. G., Skelly J. V., Neidle S. Sequence-dependent effects in drug-DNA interaction: the crystal structure of Hoechst 33258 bound to the d(CGCAAATTTGCG)2 duplex. Nucleic Acids Res. 1994 May 11;22(9):1607–1612. doi: 10.1093/nar/22.9.1607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sponar J., Votavová H. Selective binding of synthetic polypeptides to DNA of varying composition and sequence: effect of minor groove binding drugs. J Biomol Struct Dyn. 1996 Jun;13(6):979–987. doi: 10.1080/07391102.1996.10508912. [DOI] [PubMed] [Google Scholar]
  44. Sponer J., Leszczynski J., Hobza P. Hydrogen bonding and stacking of DNA bases: a review of quantum-chemical ab initio studies. J Biomol Struct Dyn. 1996 Aug;14(1):117–135. doi: 10.1080/07391102.1996.10508935. [DOI] [PubMed] [Google Scholar]
  45. Squire C. J., Baker L. J., Clark G. R., Martin R. F., White J. Structures of m-iodo Hoechst-DNA complexes in crystals with reduced solvent content: implications for minor groove binder drug design. Nucleic Acids Res. 2000 Mar 1;28(5):1252–1258. doi: 10.1093/nar/28.5.1252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Sriram M., van der Marel G. A., Roelen H. L., van Boom J. H., Wang A. H. Conformation of B-DNA containing O6-ethyl-G-C base pairs stabilized by minor groove binding drugs: molecular structure of d(CGC[e6G]AATTCGCG complexed with Hoechst 33258 or Hoechst 33342. EMBO J. 1992 Jan;11(1):225–232. doi: 10.1002/j.1460-2075.1992.tb05045.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sriram M., van der Marel G. A., Roelen H. L., van Boom J. H., Wang A. H. Structural consequences of a carcinogenic alkylation lesion on DNA: effect of O6-ethylguanine on the molecular structure of the d(CGC[e6G]AATTCGCG)-netropsin complex. Biochemistry. 1992 Dec 1;31(47):11823–11834. doi: 10.1021/bi00162a022. [DOI] [PubMed] [Google Scholar]
  48. Steinmetzer K., Reinert K. E. Multimode interaction of Hoechst 33258 with eukaryotic DNA; quantitative analysis of the DNA conformational changes. J Biomol Struct Dyn. 1998 Feb;15(4):779–791. doi: 10.1080/07391102.1998.10508992. [DOI] [PubMed] [Google Scholar]
  49. Strauss J. K., Roberts C., Nelson M. G., Switzer C., Maher L. J., 3rd DNA bending by hexamethylene-tethered ammonium ions. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9515–9520. doi: 10.1073/pnas.93.18.9515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Tabernero L., Verdaguer N., Coll M., Fita I., van der Marel G. A., van Boom J. H., Rich A., Aymamí J. Molecular structure of the A-tract DNA dodecamer d(CGCAAATTTGCG) complexed with the minor groove binding drug netropsin. Biochemistry. 1993 Aug 24;32(33):8403–8410. doi: 10.1021/bi00084a004. [DOI] [PubMed] [Google Scholar]
  51. Teng M. K., Usman N., Frederick C. A., Wang A. H. The molecular structure of the complex of Hoechst 33258 and the DNA dodecamer d(CGCGAATTCGCG). Nucleic Acids Res. 1988 Mar 25;16(6):2671–2690. doi: 10.1093/nar/16.6.2671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Vega M. C., García Sáez I., Aymamí J., Eritja R., Van der Marel G. A., Van Boom J. H., Rich A., Coll M. Three-dimensional crystal structure of the A-tract DNA dodecamer d(CGCAAATTTGCG) complexed with the minor-groove-binding drug Hoechst 33258. Eur J Biochem. 1994 Jun 15;222(3):721–726. doi: 10.1111/j.1432-1033.1994.tb18917.x. [DOI] [PubMed] [Google Scholar]
  53. Wellenzohn B., Flader W., Winger R. H., Hallbrucker A., Mayer E., Liedl K. R. Complex of B-DNA with polyamides freezes DNA backbone flexibility. J Am Chem Soc. 2001 May 30;123(21):5044–5049. doi: 10.1021/ja003639b. [DOI] [PubMed] [Google Scholar]
  54. Wemmer D. E., Dervan P. B. Targeting the minor groove of DNA. Curr Opin Struct Biol. 1997 Jun;7(3):355–361. doi: 10.1016/s0959-440x(97)80051-6. [DOI] [PubMed] [Google Scholar]
  55. Wenz C., Jeltsch A., Pingoud A. Probing the indirect readout of the restriction enzyme EcoRV. Mutational analysis of contacts to the DNA backbone. J Biol Chem. 1996 Mar 8;271(10):5565–5573. doi: 10.1074/jbc.271.10.5565. [DOI] [PubMed] [Google Scholar]
  56. Wing R., Drew H., Takano T., Broka C., Tanaka S., Itakura K., Dickerson R. E. Crystal structure analysis of a complete turn of B-DNA. Nature. 1980 Oct 23;287(5784):755–758. doi: 10.1038/287755a0. [DOI] [PubMed] [Google Scholar]
  57. Wittung-Stafshede P. Genetic medicine--when will it come to the drugstore? Science. 1998 Jul 31;281(5377):657–658. doi: 10.1126/science.281.5377.657. [DOI] [PubMed] [Google Scholar]
  58. Young M. A., Beveridge D. L. Molecular dynamics simulations of an oligonucleotide duplex with adenine tracts phased by a full helix turn. J Mol Biol. 1998 Aug 28;281(4):675–687. doi: 10.1006/jmbi.1998.1962. [DOI] [PubMed] [Google Scholar]
  59. Young M. A., Ravishanker G., Beveridge D. L. A 5-nanosecond molecular dynamics trajectory for B-DNA: analysis of structure, motions, and solvation. Biophys J. 1997 Nov;73(5):2313–2336. doi: 10.1016/S0006-3495(97)78263-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Zakrzewska K., Lavery R., Pullman B. Theoretical studies of the selective binding to DNA of two non-intercalating ligands: netropsin and SN 18071. Nucleic Acids Res. 1983 Dec 20;11(24):8825–8839. doi: 10.1093/nar/11.24.8825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Zimmer C., Kakiuchi N., Guschlbauer W. Differential stabilization by netropsin of inducible B-like conformations in deoxyribo-, ribo- and 2'-deoxy-2'-fluororibo-adenosine containing duplexes of (dA)n . (dT)n and (dA)n . (dU)na. Nucleic Acids Res. 1982 Mar 11;10(5):1721–1732. doi: 10.1093/nar/10.5.1721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. de Souza O. N., Ornstein R. L. Effect of periodic box size on aqueous molecular dynamics simulation of a DNA dodecamer with particle-mesh Ewald method. Biophys J. 1997 Jun;72(6):2395–2397. doi: 10.1016/S0006-3495(97)78884-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. van Dam L., Levitt M. H. BII nucleotides in the B and C forms of natural-sequence polymeric DNA: A new model for the C form of DNA. J Mol Biol. 2000 Dec 8;304(4):541–561. doi: 10.1006/jmbi.2000.4194. [DOI] [PubMed] [Google Scholar]
  64. von Hippel P. H. Protein-DNA recognition: new perspectives and underlying themes. Science. 1994 Feb 11;263(5148):769–770. doi: 10.1126/science.8303292. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES