Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Sep;81(3):1600–1612. doi: 10.1016/S0006-3495(01)75814-6

Temperature and halide dependence of the photocycle of halorhodopsin from Natronobacterium pharaonis.

I Chizhov 1, M Engelhard 1
PMCID: PMC1301638  PMID: 11509373

Abstract

The photocycle kinetics of halorhodopsin from Natronobacterium pharaonis (pHR(575)) was analyzed at different temperatures and chloride concentrations as well as various halides. Over the whole range of modified parameters the kinetics can be adequately modeled with six apparent rate constants. Assuming a model in which the observed rates are assigned to irreversible transitions of a single relaxation chain, six kinetically distinguishable states (P(1-6)) are discernible that are formed from four chromophore states (spectral archetypes S(j): K(570), L(N)(520), O(600), pHR'(575)). Whereas P(1) coincides with K(570) (S(1)), both P(2) and P(3) have identical spectra resembling L(520) (S(2)), thus representing a true spectral silent transition between them. P(4) constitutes a fast temperature-dependent equilibrium between the chromophore states S(2) and S(3) (L(520) and O(600), respectively). The subsequent equilibrium (P(5)) of the same spectral archetypes is only moderately temperature dependent but shows sensitivity toward the type of anion and the chloride concentration. Therefore, S(2) and S(3) occurring in P(4) as well as in P(5) have to be distinguished and are assigned to L(520)<--> O(1)(600) and O(2)(600)<--> N(520) equilibrium, respectively. It is proposed that P(4) and P(5) represent the anion release and uptake steps. Based on the experimental data affinities of the halide binding sites are estimated.

Full Text

The Full Text of this article is available as a PDF (211.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alon U., Camarena L., Surette M. G., Aguera y Arcas B., Liu Y., Leibler S., Stock J. B. Response regulator output in bacterial chemotaxis. EMBO J. 1998 Aug 3;17(15):4238–4248. doi: 10.1093/emboj/17.15.4238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ames J. B., Raap J., Lugtenburg J., Mathies R. A. Resonance Raman study of halorhodopsin photocycle kinetics, chromophore structure, and chloride-pumping mechanism. Biochemistry. 1992 Dec 22;31(50):12546–12554. doi: 10.1021/bi00165a002. [DOI] [PubMed] [Google Scholar]
  3. Bamberg E., Tittor J., Oesterhelt D. Light-driven proton or chloride pumping by halorhodopsin. Proc Natl Acad Sci U S A. 1993 Jan 15;90(2):639–643. doi: 10.1073/pnas.90.2.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Birge R. R. Nature of the primary photochemical events in rhodopsin and bacteriorhodopsin. Biochim Biophys Acta. 1990 Apr 26;1016(3):293–327. doi: 10.1016/0005-2728(90)90163-x. [DOI] [PubMed] [Google Scholar]
  5. Bivin D. B., Stoeckenius W. Photoactive retinal pigments in haloalkaliphilic bacteria. J Gen Microbiol. 1986 Aug;132(8):2167–2177. doi: 10.1099/00221287-132-8-2167. [DOI] [PubMed] [Google Scholar]
  6. Blanck A., Oesterhelt D. The halo-opsin gene. II. Sequence, primary structure of halorhodopsin and comparison with bacteriorhodopsin. EMBO J. 1987 Jan;6(1):265–273. doi: 10.1002/j.1460-2075.1987.tb04749.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chizhov I., Chernavskii D. S., Engelhard M., Mueller K. H., Zubov B. V., Hess B. Spectrally silent transitions in the bacteriorhodopsin photocycle. Biophys J. 1996 Nov;71(5):2329–2345. doi: 10.1016/S0006-3495(96)79475-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chizhov I., Schmies G., Seidel R., Sydor J. R., Lüttenberg B., Engelhard M. The photophobic receptor from Natronobacterium pharaonis: temperature and pH dependencies of the photocycle of sensory rhodopsin II. Biophys J. 1998 Aug;75(2):999–1009. doi: 10.1016/S0006-3495(98)77588-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chon Y. S., Kandori H., Sasaki J., Lanyi J. K., Needleman R., Maeda A. Existence of two L photointermediates of halorhodopsin from Halobacterium salinarium, differing in their protein and water FTIR bands. Biochemistry. 1999 Jul 20;38(29):9449–9455. doi: 10.1021/bi9903042. [DOI] [PubMed] [Google Scholar]
  10. Duschl A., Lanyi J. K., Zimányi L. Properties and photochemistry of a halorhodopsin from the haloalkalophile, Natronobacterium pharaonis. J Biol Chem. 1990 Jan 25;265(3):1261–1267. [PubMed] [Google Scholar]
  11. Gerscher S., Mylrajan M., Hildebrandt P., Baron M. H., Müller R., Engelhard M. Chromophore-anion interactions in halorhodopsin from Natronobacterium pharaonis probed by time-resolved resonance Raman spectroscopy. Biochemistry. 1997 Sep 9;36(36):11012–11020. doi: 10.1021/bi970722b. [DOI] [PubMed] [Google Scholar]
  12. Hackmann C., Guijarro J., Chizhov I., Engelhard M., Rödig C., Siebert F. Static and time-resolved step-scan Fourier transform infrared investigations of the photoreaction of halorhodopsin from Natronobacterium pharaonis: consequences for models of the anion translocation mechanism. Biophys J. 2001 Jul;81(1):394–406. doi: 10.1016/S0006-3495(01)75708-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hartmann R., Oesterhelt D. Bacteriorhodopsin-mediated photophosphorylation in Halobacterium halobium. Eur J Biochem. 1977 Jul 15;77(2):325–335. doi: 10.1111/j.1432-1033.1977.tb11671.x. [DOI] [PubMed] [Google Scholar]
  14. Haupts U., Tittor J., Bamberg E., Oesterhelt D. General concept for ion translocation by halobacterial retinal proteins: the isomerization/switch/transfer (IST) model. Biochemistry. 1997 Jan 7;36(1):2–7. doi: 10.1021/bi962014g. [DOI] [PubMed] [Google Scholar]
  15. Havelka W. A., Henderson R., Heymann J. A., Oesterhelt D. Projection structure of halorhodopsin from Halobacterium halobium at 6 A resolution obtained by electron cryo-microscopy. J Mol Biol. 1993 Dec 5;234(3):837–846. doi: 10.1006/jmbi.1993.1629. [DOI] [PubMed] [Google Scholar]
  16. Hegemann P., Oesterbelt D., Steiner M. The photocycle of the chloride pump halorhodopsin. I: Azide-catalyzed deprotonation of the chromophore is a side reaction of photocycle intermediates inactivating the pump. EMBO J. 1985 Sep;4(9):2347–2350. doi: 10.1002/j.1460-2075.1985.tb03937.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Heyde M. E., Gill D., Kilponen R. G., Rimai L. Raman spectra of Schiff bases of retinal (models of visual photoreceptors). J Am Chem Soc. 1971 Dec 15;93(25):6776–6780. doi: 10.1021/ja00754a012. [DOI] [PubMed] [Google Scholar]
  18. Hoff W. D., Jung K. H., Spudich J. L. Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu Rev Biophys Biomol Struct. 1997;26:223–258. doi: 10.1146/annurev.biophys.26.1.223. [DOI] [PubMed] [Google Scholar]
  19. Kalaidzidis I. V., Kalaidzidis Y. L., Kaulen A. D. Flash-induced voltage changes in halorhodopsin from Natronobacterium pharaonis. FEBS Lett. 1998 May 1;427(1):59–63. doi: 10.1016/s0014-5793(98)00394-9. [DOI] [PubMed] [Google Scholar]
  20. Kolbe M., Besir H., Essen L. O., Oesterhelt D. Structure of the light-driven chloride pump halorhodopsin at 1.8 A resolution. Science. 2000 May 26;288(5470):1390–1396. doi: 10.1126/science.288.5470.1390. [DOI] [PubMed] [Google Scholar]
  21. Lanyi J. K., Duschl A., Hatfield G. W., May K., Oesterhelt D. The primary structure of a halorhodopsin from Natronobacterium pharaonis. Structural, functional and evolutionary implications for bacterial rhodopsins and halorhodopsins. J Biol Chem. 1990 Jan 25;265(3):1253–1260. [PubMed] [Google Scholar]
  22. Lanyi J. K. Light-dependent trans to cis isomerization of the retinal in halorhodopsin. FEBS Lett. 1984 Oct 1;175(2):337–342. doi: 10.1016/0014-5793(84)80764-4. [DOI] [PubMed] [Google Scholar]
  23. Lanyi J. K. Progress toward an explicit mechanistic model for the light-driven pump, bacteriorhodopsin. FEBS Lett. 1999 Dec 31;464(3):103–107. doi: 10.1016/s0014-5793(99)01685-3. [DOI] [PubMed] [Google Scholar]
  24. Lanyi J. K., Vodyanoy V. Flash spectroscopic studies of the kinetics of the halorhodopsin photocycle. Biochemistry. 1986;25(6):1465–1470. doi: 10.1021/bi00354a042. [DOI] [PubMed] [Google Scholar]
  25. Ludmann K., Ibron G., Lanyi J. K., Váró G. Charge motions during the photocycle of pharaonis halorhodopsin. Biophys J. 2000 Feb;78(2):959–966. doi: 10.1016/S0006-3495(00)76653-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Matsuno-Yagi A., Mukohata Y. ATP synthesis linked to light-dependent proton uptake in a rad mutant strain of Halobacterium lacking bacteriorhodopsin. Arch Biochem Biophys. 1980 Jan;199(1):297–303. doi: 10.1016/0003-9861(80)90284-2. [DOI] [PubMed] [Google Scholar]
  27. Michel H., Oesterhelt D. Electrochemical proton gradient across the cell membrane of Halobacterium halobium: effect of N,N'-dicyclohexylcarbodiimide, relation to intracellular adenosine triphosphate, adenosine diphosphate, and phosphate concentration, and influence of the potassium gradient. Biochemistry. 1980 Sep 30;19(20):4607–4614. doi: 10.1021/bi00561a011. [DOI] [PubMed] [Google Scholar]
  28. Muneyuki E., Shibazaki C., Ohtani H., Okuno D., Asaumi M., Mogi T. Time-resolved measurements of photovoltage generation by bacteriorhodopsin and halorhodopsin adsorbed on a thin polymer film. J Biochem. 1999 Feb;125(2):270–276. doi: 10.1093/oxfordjournals.jbchem.a022283. [DOI] [PubMed] [Google Scholar]
  29. Oesterhelt D., Hegemann P., Tittor J. The photocycle of the chloride pump halorhodopsin. II: Quantum yields and a kinetic model. EMBO J. 1985 Sep;4(9):2351–2356. doi: 10.1002/j.1460-2075.1985.tb03938.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Okuno D., Asaumi M., Muneyuki E. Chloride concentration dependency of the electrogenic activity of halorhodopsin. Biochemistry. 1999 Apr 27;38(17):5422–5429. doi: 10.1021/bi9826456. [DOI] [PubMed] [Google Scholar]
  31. Paula S., Volkov A. G., Deamer D. W. Permeation of halide anions through phospholipid bilayers occurs by the solubility-diffusion mechanism. Biophys J. 1998 Jan;74(1):319–327. doi: 10.1016/S0006-3495(98)77789-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rüdiger M., Oesterhelt D. Specific arginine and threonine residues control anion binding and transport in the light-driven chloride pump halorhodopsin. EMBO J. 1997 Jul 1;16(13):3813–3821. doi: 10.1093/emboj/16.13.3813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sasaki J., Brown L. S., Chon Y. S., Kandori H., Maeda A., Needleman R., Lanyi J. K. Conversion of bacteriorhodopsin into a chloride ion pump. Science. 1995 Jul 7;269(5220):73–75. doi: 10.1126/science.7604281. [DOI] [PubMed] [Google Scholar]
  34. Scharf B., Engelhard M. Blue halorhodopsin from Natronobacterium pharaonis: wavelength regulation by anions. Biochemistry. 1994 May 31;33(21):6387–6393. doi: 10.1021/bi00187a002. [DOI] [PubMed] [Google Scholar]
  35. Schobert B., Lanyi J. K. Halorhodopsin is a light-driven chloride pump. J Biol Chem. 1982 Sep 10;257(17):10306–10313. [PubMed] [Google Scholar]
  36. Schäfer G., Engelhard M., Müller V. Bioenergetics of the Archaea. Microbiol Mol Biol Rev. 1999 Sep;63(3):570–620. doi: 10.1128/mmbr.63.3.570-620.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Taylor M. E., Bogomolni R. A., Weber H. J. Purification of photochemically active halorhodopsin. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6172–6176. doi: 10.1073/pnas.80.20.6172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tittor J., Oesterhelt D., Maurer R., Desel H., Uhl R. The photochemical cycle of halorhodopsin: absolute spectra of intermediates obtained by flash photolysis and fast difference spectra measurements. Biophys J. 1987 Dec;52(6):999–1006. doi: 10.1016/S0006-3495(87)83292-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Tsuda M., Hazemoto N., Kondo M., Kamo N., Kobatake Y., Terayama Y. Two photocycles in halobacterium halobium that lacks bacteriorhodopsin. Biochem Biophys Res Commun. 1982 Oct 15;108(3):970–976. doi: 10.1016/0006-291x(82)92094-0. [DOI] [PubMed] [Google Scholar]
  40. Váró G., Brown L. S., Sasaki J., Kandori H., Maeda A., Needleman R., Lanyi J. K. Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 1. The photochemical cycle. Biochemistry. 1995 Nov 7;34(44):14490–14499. doi: 10.1021/bi00044a027. [DOI] [PubMed] [Google Scholar]
  41. Váró G., Needleman R., Lanyi J. K. Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 2. Chloride release and uptake, protein conformation change, and thermodynamics. Biochemistry. 1995 Nov 7;34(44):14500–14507. doi: 10.1021/bi00044a028. [DOI] [PubMed] [Google Scholar]
  42. Váró G., Zimányi L., Fan X., Sun L., Needleman R., Lanyi J. K. Photocycle of halorhodopsin from Halobacterium salinarium. Biophys J. 1995 May;68(5):2062–2072. doi: 10.1016/S0006-3495(95)80385-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zimányi L., Keszthelyi L., Lanyi J. K. Transient spectroscopy of bacterial rhodopsins with an optical multichannel analyzer. 1. Comparison of the photocycles of bacteriorhodopsin and halorhodopsin. Biochemistry. 1989 Jun 13;28(12):5165–5172. doi: 10.1021/bi00438a038. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES