Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Sep;81(3):1643–1656. doi: 10.1016/S0006-3495(01)75818-3

Mechanics and multiple-particle tracking microheterogeneity of alpha-actinin-cross-linked actin filament networks.

Y Tseng 1, D Wirtz 1
PMCID: PMC1301642  PMID: 11509377

Abstract

Cell morphology is controlled by the actin cytoskeleton organization and mechanical properties, which are regulated by the available contents in actin and actin regulatory proteins. Using rheometry and the recently developed multiple-particle tracking method, we compare the mechanical properties and microheterogeneity of actin filament networks containing the F-actin cross-linking protein alpha-actinin. The elasticity of F-actin/alpha-actinin networks increases with actin concentration more rapidly for a fixed molar ratio of actin to alpha-actinin than in the absence of alpha-actinin, for networks of fixed alpha-actinin concentration and of fixed actin concentration, but more slowly than theoretically predicted for a homogeneous cross-linked semiflexible polymer network. These rheological measurements are complemented by multiple-particle tracking of fluorescent microspheres imbedded in the networks. The distribution of the mean squared displacements of these microspheres becomes progressively more asymmetric and wider for increasing concentration in alpha-actinin and, to a lesser extent, for increasing actin concentration, which suggests that F-actin networks become progressively heterogeneous for increasing protein content. This may explain the slower-than-predicted rise in elasticity of F-actin/alpha-actinin networks. Together these in vitro results suggest that actin and alpha-actinin provides the cell with an unsuspected range of regulatory pathways to modulate its cytoskeleton's micromechanics and local organization in vivo.

Full Text

The Full Text of this article is available as a PDF (455.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amblard F, Maggs AC, Yurke B, Pargellis A, Leibler S. Subdiffusion and Anomalous Local Viscoelasticity in Actin Networks. Phys Rev Lett. 1996 Nov 18;77(21):4470–4473. doi: 10.1103/PhysRevLett.77.4470. [DOI] [PubMed] [Google Scholar]
  2. Apgar J., Tseng Y., Fedorov E., Herwig M. B., Almo S. C., Wirtz D. Multiple-particle tracking measurements of heterogeneities in solutions of actin filaments and actin bundles. Biophys J. 2000 Aug;79(2):1095–1106. doi: 10.1016/S0006-3495(00)76363-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bausch A. R., Möller W., Sackmann E. Measurement of local viscoelasticity and forces in living cells by magnetic tweezers. Biophys J. 1999 Jan;76(1 Pt 1):573–579. doi: 10.1016/S0006-3495(99)77225-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borisy G. G., Svitkina T. M. Actin machinery: pushing the envelope. Curr Opin Cell Biol. 2000 Feb;12(1):104–112. doi: 10.1016/s0955-0674(99)00063-0. [DOI] [PubMed] [Google Scholar]
  5. Cortese J. D., Frieden C. Effect of filamin and controlled linear shear on the microheterogeneity of F-actin/gelsolin gels. Cell Motil Cytoskeleton. 1990;17(3):236–249. doi: 10.1002/cm.970170310. [DOI] [PubMed] [Google Scholar]
  6. Cortese J. D., Frieden C. Microheterogeneity of actin gels formed under controlled linear shear. J Cell Biol. 1988 Oct;107(4):1477–1487. doi: 10.1083/jcb.107.4.1477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Coulombe P. A., Bousquet O., Ma L., Yamada S., Wirtz D. The 'ins' and 'outs' of intermediate filament organization. Trends Cell Biol. 2000 Oct;10(10):420–428. doi: 10.1016/s0962-8924(00)01828-6. [DOI] [PubMed] [Google Scholar]
  8. Glück U., Ben-Ze'ev A. Modulation of alpha-actinin levels affects cell motility and confers tumorigenicity on 3T3 cells. J Cell Sci. 1994 Jul;107(Pt 7):1773–1782. doi: 10.1242/jcs.107.7.1773. [DOI] [PubMed] [Google Scholar]
  9. Glück U., Rodríguez Fernández J. L., Pankov R., Ben-Ze'ev A. Regulation of adherens junction protein expression in growth-activated 3T3 cells and in regenerating liver. Exp Cell Res. 1992 Oct;202(2):477–486. doi: 10.1016/0014-4827(92)90102-e. [DOI] [PubMed] [Google Scholar]
  10. Grazi E., Cuneo P., Magri E., Schwienbacher C., Trombetta G. Diffusion hindrance and geometry of filament crossings account for the complex interactions of F-actin with alpha-actinin from chicken gizzard. Biochemistry. 1993 Aug 31;32(34):8896–8901. doi: 10.1021/bi00085a022. [DOI] [PubMed] [Google Scholar]
  11. Janmey P. A., Hvidt S., Lamb J., Stossel T. P. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks. Nature. 1990 May 3;345(6270):89–92. doi: 10.1038/345089a0. [DOI] [PubMed] [Google Scholar]
  12. Jones J. D., Luby-Phelps K. Tracer diffusion through F-actin: effect of filament length and cross-linking. Biophys J. 1996 Nov;71(5):2742–2750. doi: 10.1016/S0006-3495(96)79467-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kirkeeide E. K., Pryme I. F., Vedeler A. Microfilaments and protein synthesis; effects of insulin. Int J Biochem. 1993 Jun;25(6):853–864. doi: 10.1016/0020-711x(93)90240-f. [DOI] [PubMed] [Google Scholar]
  14. Käs J., Strey H., Sackmann E. Direct imaging of reptation for semiflexible actin filaments. Nature. 1994 Mar 17;368(6468):226–229. doi: 10.1038/368226a0. [DOI] [PubMed] [Google Scholar]
  15. LeDuc P., Haber C., Bao G., Wirtz D. Dynamics of individual flexible polymers in a shear flow. Nature. 1999 Jun 10;399(6736):564–566. doi: 10.1038/21148. [DOI] [PubMed] [Google Scholar]
  16. Luby-Phelps K., Castle P. E., Taylor D. L., Lanni F. Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc Natl Acad Sci U S A. 1987 Jul;84(14):4910–4913. doi: 10.1073/pnas.84.14.4910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ma L., Xu J., Coulombe P. A., Wirtz D. Keratin filament suspensions show unique micromechanical properties. J Biol Chem. 1999 Jul 2;274(27):19145–19151. doi: 10.1074/jbc.274.27.19145. [DOI] [PubMed] [Google Scholar]
  18. Ma L., Yamada S., Wirtz D., Coulombe P. A. A 'hot-spot' mutation alters the mechanical properties of keratin filament networks. Nat Cell Biol. 2001 May;3(5):503–506. doi: 10.1038/35074576. [DOI] [PubMed] [Google Scholar]
  19. MacKintosh FC, Käs J, Janmey PA. Elasticity of semiflexible biopolymer networks. Phys Rev Lett. 1995 Dec 11;75(24):4425–4428. doi: 10.1103/PhysRevLett.75.4425. [DOI] [PubMed] [Google Scholar]
  20. Maksym G. N., Fabry B., Butler J. P., Navajas D., Tschumperlin D. J., Laporte J. D., Fredberg J. J. Mechanical properties of cultured human airway smooth muscle cells from 0.05 to 0.4 Hz. J Appl Physiol (1985) 2000 Oct;89(4):1619–1632. doi: 10.1152/jappl.2000.89.4.1619. [DOI] [PubMed] [Google Scholar]
  21. Merkel R., Simson R., Simson D. A., Hohenadl M., Boulbitch A., Wallraff E., Sackmann E. A micromechanic study of cell polarity and plasma membrane cell body coupling in Dictyostelium. Biophys J. 2000 Aug;79(2):707–719. doi: 10.1016/S0006-3495(00)76329-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Myers J. C., Li D., Rubinstein N. A., Clark C. C. Up-regulation of type XIX collagen in rhabdomyosarcoma cells accompanies myogenic differentiation. Exp Cell Res. 1999 Dec 15;253(2):587–598. doi: 10.1006/excr.1999.4642. [DOI] [PubMed] [Google Scholar]
  23. Palmer A., Xu J., Kuo S. C., Wirtz D. Diffusing wave spectroscopy microrheology of actin filament networks. Biophys J. 1999 Feb;76(2):1063–1071. doi: 10.1016/S0006-3495(99)77271-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pollard T. D., Almo S., Quirk S., Vinson V., Lattman E. E. Structure of actin binding proteins: insights about function at atomic resolution. Annu Rev Cell Biol. 1994;10:207–249. doi: 10.1146/annurev.cb.10.110194.001231. [DOI] [PubMed] [Google Scholar]
  25. Pollard T. D., Blanchoin L., Mullins R. D. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct. 2000;29:545–576. doi: 10.1146/annurev.biophys.29.1.545. [DOI] [PubMed] [Google Scholar]
  26. Rodríguez Fernández J. L., Ben-Ze'ev A. Regulation of fibronectin, integrin and cytoskeleton expression in differentiating adipocytes: inhibition by extracellular matrix and polylysine. Differentiation. 1989 Dec;42(2):65–74. doi: 10.1111/j.1432-0436.1989.tb00608.x. [DOI] [PubMed] [Google Scholar]
  27. Sato M., Schwarz W. H., Pollard T. D. Dependence of the mechanical properties of actin/alpha-actinin gels on deformation rate. 1987 Feb 26-Mar 4Nature. 325(6107):828–830. doi: 10.1038/325828a0. [DOI] [PubMed] [Google Scholar]
  28. Small J. V., Rottner K., Kaverina I. Functional design in the actin cytoskeleton. Curr Opin Cell Biol. 1999 Feb;11(1):54–60. doi: 10.1016/s0955-0674(99)80007-6. [DOI] [PubMed] [Google Scholar]
  29. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  30. Svitkina T. M., Borisy G. G. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J Cell Biol. 1999 May 31;145(5):1009–1026. doi: 10.1083/jcb.145.5.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Tempel M, Isenberg G, Sackmann E. Temperature-induced sol-gel transition and microgel formation in alpha -actinin cross-linked actin networks: A rheological study. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Aug;54(2):1802–1810. doi: 10.1103/physreve.54.1802. [DOI] [PubMed] [Google Scholar]
  32. Verkhovsky A. B., Svitkina T. M., Borisy G. G. Myosin II filament assemblies in the active lamella of fibroblasts: their morphogenesis and role in the formation of actin filament bundles. J Cell Biol. 1995 Nov;131(4):989–1002. doi: 10.1083/jcb.131.4.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wachsstock D. H., Schwartz W. H., Pollard T. D. Affinity of alpha-actinin for actin determines the structure and mechanical properties of actin filament gels. Biophys J. 1993 Jul;65(1):205–214. doi: 10.1016/S0006-3495(93)81059-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wachsstock D. H., Schwarz W. H., Pollard T. D. Cross-linker dynamics determine the mechanical properties of actin gels. Biophys J. 1994 Mar;66(3 Pt 1):801–809. doi: 10.1016/s0006-3495(94)80856-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Xu J., Schwarz W. H., Käs J. A., Stossel T. P., Janmey P. A., Pollard T. D. Mechanical properties of actin filament networks depend on preparation, polymerization conditions, and storage of actin monomers. Biophys J. 1998 May;74(5):2731–2740. doi: 10.1016/S0006-3495(98)77979-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Xu J., Tseng Y., Wirtz D. Strain hardening of actin filament networks. Regulation by the dynamic cross-linking protein alpha-actinin. J Biol Chem. 2000 Nov 17;275(46):35886–35892. doi: 10.1074/jbc.M002377200. [DOI] [PubMed] [Google Scholar]
  37. Yamada S., Wirtz D., Kuo S. C. Mechanics of living cells measured by laser tracking microrheology. Biophys J. 2000 Apr;78(4):1736–1747. doi: 10.1016/S0006-3495(00)76725-7. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES