Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Sep;81(3):1657–1665. doi: 10.1016/S0006-3495(01)75819-5

Evidence that the 127-164 region of prion proteins has two equi-energetic conformations with beta or alpha features.

P Derreumaux 1
PMCID: PMC1301643  PMID: 11509378

Abstract

Prion proteins cause neurodegenerative illnesses in humans and animals. The diseases are associated with a topological change from a predominantly alpha (PrP(C)) to beta-sheet (PrP(Sc)) structure. Many studies have focused on the minimum sequence requirements and key events for developing or transmitting disease. Here, we report on the application of molecular modeling studies to predict the lowest-energy conformations for five fragments in solution at pH 7. We show that PrP(143-158) adopts a helix, the model PrP(106-126), PrP(142-167), and PrP(143-178) peptides have a clear preference for a variety of beta-sheet structures, whereas PrP(127-164) has two iso-energetic conformations with all beta or alphabeta native-like structures. Such a finding for PrP(127-164), which explains a large body of experimental data, including the location of all mutations causing prion diseases, may have important implications for triggering or propagating the topological change.

Full Text

The Full Text of this article is available as a PDF (209.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baskakov I. V., Aagaard C., Mehlhorn I., Wille H., Groth D., Baldwin M. A., Prusiner S. B., Cohen F. E. Self-assembly of recombinant prion protein of 106 residues. Biochemistry. 2000 Mar 14;39(10):2792–2804. doi: 10.1021/bi9923353. [DOI] [PubMed] [Google Scholar]
  2. Brown D. R., Schmidt B., Kretzschmar H. A. Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature. 1996 Mar 28;380(6572):345–347. doi: 10.1038/380345a0. [DOI] [PubMed] [Google Scholar]
  3. Chabry J., Caughey B., Chesebro B. Specific inhibition of in vitro formation of protease-resistant prion protein by synthetic peptides. J Biol Chem. 1998 May 22;273(21):13203–13207. doi: 10.1074/jbc.273.21.13203. [DOI] [PubMed] [Google Scholar]
  4. Derreumaux P. Generating ensemble averages for small proteins from extended conformations by Monte Carlo simulations. Phys Rev Lett. 2000 Jul 3;85(1):206–209. doi: 10.1103/PhysRevLett.85.206. [DOI] [PubMed] [Google Scholar]
  5. Downing D. T., Lazo N. D. Molecular modelling indicates that the pathological conformations of prion proteins might be beta-helical. Biochem J. 1999 Oct 15;343(Pt 2):453–460. [PMC free article] [PubMed] [Google Scholar]
  6. Duan Y., Kollman P. A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science. 1998 Oct 23;282(5389):740–744. doi: 10.1126/science.282.5389.740. [DOI] [PubMed] [Google Scholar]
  7. Ettaiche M., Pichot R., Vincent J. P., Chabry J. In vivo cytotoxicity of the prion protein fragment 106-126. J Biol Chem. 2000 Nov 24;275(47):36487–36490. doi: 10.1074/jbc.C000579200. [DOI] [PubMed] [Google Scholar]
  8. Ghetti B., Piccardo P., Spillantini M. G., Ichimiya Y., Porro M., Perini F., Kitamoto T., Tateishi J., Seiler C., Frangione B. Vascular variant of prion protein cerebral amyloidosis with tau-positive neurofibrillary tangles: the phenotype of the stop codon 145 mutation in PRNP. Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):744–748. doi: 10.1073/pnas.93.2.744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Holm L., Sander C. Fast and simple Monte Carlo algorithm for side chain optimization in proteins: application to model building by homology. Proteins. 1992 Oct;14(2):213–223. doi: 10.1002/prot.340140208. [DOI] [PubMed] [Google Scholar]
  10. Hornemann S., Glockshuber R. A scrapie-like unfolding intermediate of the prion protein domain PrP(121-231) induced by acidic pH. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6010–6014. doi: 10.1073/pnas.95.11.6010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huang Z., Prusiner S. B., Cohen F. E. Scrapie prions: a three-dimensional model of an infectious fragment. Fold Des. 1996;1(1):13–19. doi: 10.1016/S1359-0278(96)00007-7. [DOI] [PubMed] [Google Scholar]
  12. James T. L., Liu H., Ulyanov N. B., Farr-Jones S., Zhang H., Donne D. G., Kaneko K., Groth D., Mehlhorn I., Prusiner S. B. Solution structure of a 142-residue recombinant prion protein corresponding to the infectious fragment of the scrapie isoform. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10086–10091. doi: 10.1073/pnas.94.19.10086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jarrett J. T., Lansbury P. T., Jr Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell. 1993 Jun 18;73(6):1055–1058. doi: 10.1016/0092-8674(93)90635-4. [DOI] [PubMed] [Google Scholar]
  14. Kaneko K., Zulianello L., Scott M., Cooper C. M., Wallace A. C., James T. L., Cohen F. E., Prusiner S. B. Evidence for protein X binding to a discontinuous epitope on the cellular prion protein during scrapie prion propagation. Proc Natl Acad Sci U S A. 1997 Sep 16;94(19):10069–10074. doi: 10.1073/pnas.94.19.10069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kitamoto T., Ohta M., Doh-ura K., Hitoshi S., Terao Y., Tateishi J. Novel missense variants of prion protein in Creutzfeldt-Jakob disease or Gerstmann-Sträussler syndrome. Biochem Biophys Res Commun. 1993 Mar 15;191(2):709–714. doi: 10.1006/bbrc.1993.1275. [DOI] [PubMed] [Google Scholar]
  16. Koehl P., Delarue M. Application of a self-consistent mean field theory to predict protein side-chains conformation and estimate their conformational entropy. J Mol Biol. 1994 Jun 3;239(2):249–275. doi: 10.1006/jmbi.1994.1366. [DOI] [PubMed] [Google Scholar]
  17. Korth C., Stierli B., Streit P., Moser M., Schaller O., Fischer R., Schulz-Schaeffer W., Kretzschmar H., Raeber A., Braun U. Prion (PrPSc)-specific epitope defined by a monoclonal antibody. Nature. 1997 Nov 6;390(6655):74–77. doi: 10.1038/36337. [DOI] [PubMed] [Google Scholar]
  18. Lazaridis T., Karplus M. Discrimination of the native from misfolded protein models with an energy function including implicit solvation. J Mol Biol. 1999 May 7;288(3):477–487. doi: 10.1006/jmbi.1999.2685. [DOI] [PubMed] [Google Scholar]
  19. Liemann S., Glockshuber R. Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein. Biochemistry. 1999 Mar 16;38(11):3258–3267. doi: 10.1021/bi982714g. [DOI] [PubMed] [Google Scholar]
  20. Liu A., Riek R., Zahn R., Hornemann S., Glockshuber R., Wüthrich K. Peptides and proteins in neurodegenerative disease: helix propensity of a polypeptide containing helix 1 of the mouse prion protein studied by NMR and CD spectroscopy. Biopolymers. 1999;51(2):145–152. doi: 10.1002/(SICI)1097-0282(1999)51:2<145::AID-BIP4>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  21. Maiti N. R., Surewicz W. K. The role of disulfide bridge in the folding and stability of the recombinant human prion protein. J Biol Chem. 2000 Nov 7;276(4):2427–2431. doi: 10.1074/jbc.M007862200. [DOI] [PubMed] [Google Scholar]
  22. Morrissey M. P., Shakhnovich E. I. Evidence for the role of PrP(C) helix 1 in the hydrophilic seeding of prion aggregates. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11293–11298. doi: 10.1073/pnas.96.20.11293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Parchment O. G., Essex J. W. Molecular dynamics of mouse and Syrian hamster PrP: implications for activity. Proteins. 2000 Feb 15;38(3):327–340. [PubMed] [Google Scholar]
  24. Peretz D., Williamson R. A., Matsunaga Y., Serban H., Pinilla C., Bastidas R. B., Rozenshteyn R., James T. L., Houghten R. A., Cohen F. E. A conformational transition at the N terminus of the prion protein features in formation of the scrapie isoform. J Mol Biol. 1997 Oct 31;273(3):614–622. doi: 10.1006/jmbi.1997.1328. [DOI] [PubMed] [Google Scholar]
  25. Prusiner S. B. Prion diseases and the BSE crisis. Science. 1997 Oct 10;278(5336):245–251. doi: 10.1126/science.278.5336.245. [DOI] [PubMed] [Google Scholar]
  26. Riek R., Hornemann S., Wider G., Billeter M., Glockshuber R., Wüthrich K. NMR structure of the mouse prion protein domain PrP(121-231). Nature. 1996 Jul 11;382(6587):180–182. doi: 10.1038/382180a0. [DOI] [PubMed] [Google Scholar]
  27. Salmona M., Malesani P., De Gioia L., Gorla S., Bruschi M., Molinari A., Della Vedova F., Pedrotti B., Marrari M. A., Awan T. Molecular determinants of the physicochemical properties of a critical prion protein region comprising residues 106-126. Biochem J. 1999 Aug 15;342(Pt 1):207–214. [PMC free article] [PubMed] [Google Scholar]
  28. Sharman G. J., Kenward N., Williams H. E., Landon M., Mayer R. J., Searle M. S. Prion protein fragments spanning helix 1 and both strands of beta sheet (residues 125-170) show evidence for predominantly helical propensity by CD and NMR. Fold Des. 1998;3(5):313–320. doi: 10.1016/s1359-0278(98)00043-1. [DOI] [PubMed] [Google Scholar]
  29. Sobolev V., Sorokine A., Prilusky J., Abola E. E., Edelman M. Automated analysis of interatomic contacts in proteins. Bioinformatics. 1999 Apr;15(4):327–332. doi: 10.1093/bioinformatics/15.4.327. [DOI] [PubMed] [Google Scholar]
  30. Soto C., Kascsak R. J., Saborío G. P., Aucouturier P., Wisniewski T., Prelli F., Kascsak R., Mendez E., Harris D. A., Ironside J. Reversion of prion protein conformational changes by synthetic beta-sheet breaker peptides. Lancet. 2000 Jan 15;355(9199):192–197. doi: 10.1016/s0140-6736(99)11419-3. [DOI] [PubMed] [Google Scholar]
  31. Sparrer H. E., Santoso A., Szoka F. C., Jr, Weissman J. S. Evidence for the prion hypothesis: induction of the yeast [PSI+] factor by in vitro- converted Sup35 protein. Science. 2000 Jul 28;289(5479):595–599. doi: 10.1126/science.289.5479.595. [DOI] [PubMed] [Google Scholar]
  32. Supattapone S., Bosque P., Muramoto T., Wille H., Aagaard C., Peretz D., Nguyen H. O., Heinrich C., Torchia M., Safar J. Prion protein of 106 residues creates an artifical transmission barrier for prion replication in transgenic mice. Cell. 1999 Mar 19;96(6):869–878. doi: 10.1016/s0092-8674(00)80596-6. [DOI] [PubMed] [Google Scholar]
  33. Young K., Jones C. K., Piccardo P., Lazzarini A., Golbe L. I., Zimmerman T. R., Jr, Dickson D. W., McLachlan D. C., St George-Hyslop P., Lennox A. Gerstmann-Sträussler-Scheinker disease with mutation at codon 102 and methionine at codon 129 of PRNP in previously unreported patients. Neurology. 1995 Jun;45(6):1127–1134. doi: 10.1212/wnl.45.6.1127. [DOI] [PubMed] [Google Scholar]
  34. Zahn R., Liu A., Lührs T., Riek R., von Schroetter C., López García F., Billeter M., Calzolai L., Wider G., Wüthrich K. NMR solution structure of the human prion protein. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):145–150. doi: 10.1073/pnas.97.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zhang H., Kaneko K., Nguyen J. T., Livshits T. L., Baldwin M. A., Cohen F. E., James T. L., Prusiner S. B. Conformational transitions in peptides containing two putative alpha-helices of the prion protein. J Mol Biol. 1995 Jul 21;250(4):514–526. doi: 10.1006/jmbi.1995.0395. [DOI] [PubMed] [Google Scholar]
  36. Zhang Y., Swietnicki W., Zagorski M. G., Surewicz W. K., Sönnichsen F. D. Solution structure of the E200K variant of human prion protein. Implications for the mechanism of pathogenesis in familial prion diseases. J Biol Chem. 2000 Oct 27;275(43):33650–33654. doi: 10.1074/jbc.C000483200. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES