Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Sep;81(3):1677–1683. doi: 10.1016/S0006-3495(01)75821-3

Structure of type I antifreeze protein and mutants in supercooled water.

S P Graether 1, C M Slupsky 1, P L Davies 1, B D Sykes 1
PMCID: PMC1301645  PMID: 11509380

Abstract

Many organisms are able to survive subzero temperatures at which bodily fluids would normally be expected to freeze. These organisms have adapted to these lower temperatures by synthesizing antifreeze proteins (AFPs), capable of binding to ice, which make further growth of ice energetically unfavorable. To date, the structures of five AFPs have been determined, and they show considerable sequence and structural diversity. The type I AFP reveals a single 37-residue alpha-helical structure. We have studied the behavior of wild-type type I AFP and two "inactive" mutants (Ala17Leu and Thr13Ser/Thr24Ser) in normal and supercooled solutions of H(2)O and deuterium oxide (D(2)O) to see if the structure at temperatures below the equilibrium freezing point is different from the structure observed at above freezing temperatures. Analysis of 1D (1)H- and (13)C-NMR spectra illustrate that all three proteins remain folded as the temperature is lowered and even seem to become more alpha-helical as evidenced by (13)C(alpha)-NMR chemical shift changes. Furthermore, (13)C-T(2) NMR relaxation measurements demonstrate that the rotational correlation times of all three proteins behave in a predictable manner under all temperatures and conditions studied. These data have important implications for the structure of the AFP bound to ice as well as the mechanisms for ice-binding and protein oligomerization.

Full Text

The Full Text of this article is available as a PDF (136.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antson A. A., Smith D. J., Roper D. I., Lewis S., Caves L. S., Verma C. S., Buckley S. L., Lillford P. J., Hubbard R. E. Understanding the mechanism of ice binding by type III antifreeze proteins. J Mol Biol. 2001 Jan 26;305(4):875–889. doi: 10.1006/jmbi.2000.4336. [DOI] [PubMed] [Google Scholar]
  2. Baardsnes J., Kondejewski L. H., Hodges R. S., Chao H., Kay C., Davies P. L. New ice-binding face for type I antifreeze protein. FEBS Lett. 1999 Dec 10;463(1-2):87–91. doi: 10.1016/s0014-5793(99)01588-4. [DOI] [PubMed] [Google Scholar]
  3. Chao H., Houston M. E., Jr, Hodges R. S., Kay C. M., Sykes B. D., Loewen M. C., Davies P. L., Sönnichsen F. D. A diminished role for hydrogen bonds in antifreeze protein binding to ice. Biochemistry. 1997 Dec 2;36(48):14652–14660. doi: 10.1021/bi970817d. [DOI] [PubMed] [Google Scholar]
  4. Chou K. C. Energy-optimized structure of antifreeze protein and its binding mechanism. J Mol Biol. 1992 Jan 20;223(2):509–517. doi: 10.1016/0022-2836(92)90666-8. [DOI] [PubMed] [Google Scholar]
  5. Dalal P., Sönnichsen F. D. Source of the ice-binding specificity of antifreeze protein type I. J Chem Inf Comput Sci. 2000 Sep-Oct;40(5):1276–1284. doi: 10.1021/ci000449b. [DOI] [PubMed] [Google Scholar]
  6. Davies P. L., Sykes B. D. Antifreeze proteins. Curr Opin Struct Biol. 1997 Dec;7(6):828–834. doi: 10.1016/s0959-440x(97)80154-6. [DOI] [PubMed] [Google Scholar]
  7. DeLuca C. I., Davies P. L., Ye Q., Jia Z. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice. J Mol Biol. 1998 Jan 23;275(3):515–525. doi: 10.1006/jmbi.1997.1482. [DOI] [PubMed] [Google Scholar]
  8. Devries A. L., Lin Y. Structure of a peptide antifreeze and mechanism of adsorption to ice. Biochim Biophys Acta. 1977 Dec 20;495(2):388–392. doi: 10.1016/0005-2795(77)90395-6. [DOI] [PubMed] [Google Scholar]
  9. Eto T. K., Rubinsky B. Antifreeze glycoproteins increase solution viscosity. Biochem Biophys Res Commun. 1993 Dec 15;197(2):927–931. doi: 10.1006/bbrc.1993.2568. [DOI] [PubMed] [Google Scholar]
  10. Ewart K. V., Lin Q., Hew C. L. Structure, function and evolution of antifreeze proteins. Cell Mol Life Sci. 1999 Feb;55(2):271–283. doi: 10.1007/s000180050289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Farrow N. A., Muhandiram R., Singer A. U., Pascal S. M., Kay C. M., Gish G., Shoelson S. E., Pawson T., Forman-Kay J. D., Kay L. E. Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. Biochemistry. 1994 May 17;33(19):5984–6003. doi: 10.1021/bi00185a040. [DOI] [PubMed] [Google Scholar]
  12. Graether S. P., DeLuca C. I., Baardsnes J., Hill G. A., Davies P. L., Jia Z. Quantitative and qualitative analysis of type III antifreeze protein structure and function. J Biol Chem. 1999 Apr 23;274(17):11842–11847. doi: 10.1074/jbc.274.17.11842. [DOI] [PubMed] [Google Scholar]
  13. Graether S. P., Kuiper M. J., Gagné S. M., Walker V. K., Jia Z., Sykes B. D., Davies P. L. Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect. Nature. 2000 Jul 20;406(6793):325–328. doi: 10.1038/35018610. [DOI] [PubMed] [Google Scholar]
  14. Gronwald W., Chao H., Reddy D. V., Davies P. L., Sykes B. D., Sönnichsen F. D. NMR characterization of side chain flexibility and backbone structure in the type I antifreeze protein at near freezing temperatures. Biochemistry. 1996 Dec 24;35(51):16698–16704. doi: 10.1021/bi961934w. [DOI] [PubMed] [Google Scholar]
  15. Gronwald W., Loewen M. C., Lix B., Daugulis A. J., Sönnichsen F. D., Davies P. L., Sykes B. D. The solution structure of type II antifreeze protein reveals a new member of the lectin family. Biochemistry. 1998 Apr 7;37(14):4712–4721. doi: 10.1021/bi972788c. [DOI] [PubMed] [Google Scholar]
  16. Haymet A. D., Ward L. G., Harding M. M., Knight C. A. Valine substituted winter flounder 'antifreeze': preservation of ice growth hysteresis. FEBS Lett. 1998 Jul 3;430(3):301–306. doi: 10.1016/s0014-5793(98)00652-8. [DOI] [PubMed] [Google Scholar]
  17. Hodges R. S., Semchuk P. D., Taneja A. K., Kay C. M., Parker J. M., Mant C. T. Protein design using model synthetic peptides. Pept Res. 1988 Sep-Oct;1(1):19–30. [PubMed] [Google Scholar]
  18. Jia Z., DeLuca C. I., Chao H., Davies P. L. Structural basis for the binding of a globular antifreeze protein to ice. Nature. 1996 Nov 21;384(6606):285–288. doi: 10.1038/384285a0. [DOI] [PubMed] [Google Scholar]
  19. Jorgensen H., Mori M., Matsui H., Kanaoka M., Yanagi H., Yabusaki Y., Kikuzono Y. Molecular dynamics simulation of winter flounder antifreeze protein variants in solution: correlation between side chain spacing and ice lattice. Protein Eng. 1993 Jan;6(1):19–27. doi: 10.1093/protein/6.1.19. [DOI] [PubMed] [Google Scholar]
  20. Knight C. A., Cheng C. C., DeVries A. L. Adsorption of alpha-helical antifreeze peptides on specific ice crystal surface planes. Biophys J. 1991 Feb;59(2):409–418. doi: 10.1016/S0006-3495(91)82234-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Liou Y. C., Tocilj A., Davies P. L., Jia Z. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein. Nature. 2000 Jul 20;406(6793):322–324. doi: 10.1038/35018604. [DOI] [PubMed] [Google Scholar]
  22. Madura J. D., Baran K., Wierzbicki A. Molecular recognition and binding of thermal hysteresis proteins to ice. J Mol Recognit. 2000 Mar-Apr;13(2):101–113. doi: 10.1002/(SICI)1099-1352(200003/04)13:2<101::AID-JMR493>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  23. Raymond J. A., DeVries A. L. Adsorption inhibition as a mechanism of freezing resistance in polar fishes. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2589–2593. doi: 10.1073/pnas.74.6.2589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sicheri F., Yang D. S. Ice-binding structure and mechanism of an antifreeze protein from winter flounder. Nature. 1995 Jun 1;375(6530):427–431. doi: 10.1038/375427a0. [DOI] [PubMed] [Google Scholar]
  25. Sönnichsen F. D., DeLuca C. I., Davies P. L., Sykes B. D. Refined solution structure of type III antifreeze protein: hydrophobic groups may be involved in the energetics of the protein-ice interaction. Structure. 1996 Nov 15;4(11):1325–1337. doi: 10.1016/s0969-2126(96)00140-2. [DOI] [PubMed] [Google Scholar]
  26. Wen D., Laursen R. A. A model for binding of an antifreeze polypeptide to ice. Biophys J. 1992 Dec;63(6):1659–1662. doi: 10.1016/S0006-3495(92)81750-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wierzbicki A., Taylor M. S., Knight C. A., Madura J. D., Harrington J. P., Sikes C. S. Analysis of shorthorn sculpin antifreeze protein stereospecific binding to (2-1 0) faces of ice. Biophys J. 1996 Jul;71(1):8–18. doi: 10.1016/S0006-3495(96)79204-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wishart D. S., Sykes B. D., Richards F. M. Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol. 1991 Nov 20;222(2):311–333. doi: 10.1016/0022-2836(91)90214-q. [DOI] [PubMed] [Google Scholar]
  29. Woody R. W. Circular dichroism. Methods Enzymol. 1995;246:34–71. doi: 10.1016/0076-6879(95)46006-3. [DOI] [PubMed] [Google Scholar]
  30. Yang D. S., Sax M., Chakrabartty A., Hew C. L. Crystal structure of an antifreeze polypeptide and its mechanistic implications. Nature. 1988 May 19;333(6170):232–237. doi: 10.1038/333232a0. [DOI] [PubMed] [Google Scholar]
  31. Yeh Yin, Feeney Robert E. Antifreeze Proteins: Structures and Mechanisms of Function. Chem Rev. 1996 Mar 28;96(2):601–618. doi: 10.1021/cr950260c. [DOI] [PubMed] [Google Scholar]
  32. Zhang W., Laursen R. A. Structure-function relationships in a type I antifreeze polypeptide. The role of threonine methyl and hydroxyl groups in antifreeze activity. J Biol Chem. 1998 Dec 25;273(52):34806–34812. doi: 10.1074/jbc.273.52.34806. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES