Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Sep;81(3):1699–1709. doi: 10.1016/S0006-3495(01)75823-7

Decomposition of protein tryptophan fluorescence spectra into log-normal components. I. Decomposition algorithms.

E A Burstein 1, S M Abornev 1, Y K Reshetnyak 1
PMCID: PMC1301647  PMID: 11509382

Abstract

Two algorithms of decomposition of composite protein tryptophan fluorescence spectra were developed based on the possibility that the shape of elementary spectral component could be accurately described by a uniparametric log-normal function. The need for several mathematically different algorithms is dictated by the fact that decomposition of spectra into widely overlapping smooth components is a typical incorrect problem. Only the coincidence of components obtained with various algorithms can guarantee correctness and reliability of results. In this paper we propose the following algorithms of decomposition: (1) the SImple fitting procedure using the root-Mean-Square criterion (SIMS) operating with either individual emission spectra or sets of spectra measured with various quencher concentrations; and (2) the pseudo-graphic analytical procedure using a PHase plane in coordinates of normalized emission intensities at various wavelengths (wavenumbers) and REsolving sets of spectra measured with various Quencher concentrations (PHREQ). The actual experimental noise precludes decomposition of protein spectra into more than three components.

Full Text

The Full Text of this article is available as a PDF (130.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abornev S. M., Burshtein E. A. Razlozhenie spektrov fluorestsentsii ostatkov triptofana v belkakh na log-normal'nye komponenty metodom naimen'shikh kvadratov. Mol Biol (Mosk) 1992 Nov-Dec;26(6):1350–1361. [PubMed] [Google Scholar]
  2. Bandorowicz J., Pikuła S., Sobota A. Annexins IV (p32) and VI (p68) interact with erythrocyte membrane in a calcium-dependent manner. Biochim Biophys Acta. 1992 Apr 13;1105(2):201–206. doi: 10.1016/0005-2736(92)90195-r. [DOI] [PubMed] [Google Scholar]
  3. Bukolova-Orlova T. G., Burstein E. A., Yukelson LYa Fluorescence of neurotoxins from middle-Asian cobra venom. Biochim Biophys Acta. 1974 Apr 11;342(2):275–280. doi: 10.1016/0005-2795(74)90082-8. [DOI] [PubMed] [Google Scholar]
  4. Burstein E. A., Vedenkina N. S., Ivkova M. N. Fluorescence and the location of tryptophan residues in protein molecules. Photochem Photobiol. 1973 Oct;18(4):263–279. doi: 10.1111/j.1751-1097.1973.tb06422.x. [DOI] [PubMed] [Google Scholar]
  5. Kaplanas R. I., Bukolova T. G., Burshtein E. A. Fluorestsentsiia beta-laktoglobulina AB v razlichnykh fiziko-khimicheskikh usloviiakh, Denaturatsiia mochevinoi i organicheskimi rastvoriteliami. Mol Biol (Mosk) 1975 Nov-Dec;9(6):795–804. [PubMed] [Google Scholar]
  6. Kleihues P., Lang W., Burger P. C., Budka H., Vogt M., Maurer R., Lüthy R., Siegenthaler W. Progressive diffuse leukoencephalopathy in patients with acquired immune deficiency syndrome (AIDS). Acta Neuropathol. 1985;68(4):333–339. doi: 10.1007/BF00690837. [DOI] [PubMed] [Google Scholar]
  7. Lehrer S. S., Leavis P. C. Solute quenching of protein fluorescence. Methods Enzymol. 1978;49:222–236. doi: 10.1016/s0076-6879(78)49012-3. [DOI] [PubMed] [Google Scholar]
  8. Lehrer S. S. Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry. 1971 Aug 17;10(17):3254–3263. doi: 10.1021/bi00793a015. [DOI] [PubMed] [Google Scholar]
  9. Metzler C. M., Viswanath R., Metzler D. E. Equilibria and absorption spectra of tryptophanase. J Biol Chem. 1991 May 25;266(15):9374–9381. [PubMed] [Google Scholar]
  10. Metzler D. E., Harris C., Yang I. Y., Siano D., Thomson J. A. Band-shape analysis and display of fine structure in protein spectra: a new approach to perturbation spectroscopy. Biochem Biophys Res Commun. 1972 Feb 25;46(4):1588–1597. doi: 10.1016/0006-291x(72)90790-5. [DOI] [PubMed] [Google Scholar]
  11. Permyakov E. A., Yarmolenko V. V., Emelyanenko V. I., Burstein E. A., Closset J., Gerday C. Fluorescence studies of the calcium binding to whiting (Gadus merlangus) parvalbumin. Eur J Biochem. 1980 Aug;109(1):307–315. doi: 10.1111/j.1432-1033.1980.tb04796.x. [DOI] [PubMed] [Google Scholar]
  12. Sobota A., Bandorowicz J., Jezierski A., Sikorski A. F. The effect of annexin IV and VI on the fluidity of phosphatidylserine/phosphatidylcholine bilayers studied with the use of 5-deoxylstearate spin label. FEBS Lett. 1993 Jan 4;315(2):178–182. doi: 10.1016/0014-5793(93)81158-v. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES