Abstract
In biological macromolecules, fluorophores often exhibit multiple depolarizing motions that require multiple lifetimes and rotational relaxation times to define fluorescence intensity and anisotropy decays. The related analysis of time-correlated single-photon counting data becomes uncertain due to the multitude of decay parameters and numerical sensitivity to deconvolution of the instrument response function (IRF) via discretization of integrals. By using simulations we show that improved discretizations based on quadratic and cubic local approximations of the IRF yield more accurate estimation of short rotational relaxation times and lifetimes than the commonly used Grinvald-Steinberg discretization, which in turn appears more reliable than two discretizations based on linear local approximations of the IRF. In addition, our simulation suggests that cubic approximation is the most advantageous in discriminating complex heterogeneous and homogeneous anisotropy decay. We show that among three different information criteria, the Akaike information criterion is best suited for detection of heterogeneity in rotational relaxation times. It is capable of detecting heterogeneity even when anisotropy decay appears homogeneous within statistical errors of estimation.
Full Text
The Full Text of this article is available as a PDF (168.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Backlund B. M., Gräslund A. Structure and dynamics of motilin. Time-resolved fluorescence of peptide hormone with single tyrosine residue. Biophys Chem. 1992 Nov;45(1):17–25. doi: 10.1016/0301-4622(92)87019-f. [DOI] [PubMed] [Google Scholar]
- Backlund B. M., Kulinski T., Rigler R., Gräslund A. Dynamics of the peptide hormone motilin studied by time resolved fluorescence spectroscopy. Eur Biophys J. 1995;23(6):407–412. doi: 10.1007/BF00196827. [DOI] [PubMed] [Google Scholar]
- Bajzer Z., Prendergast F. G. Maximum likelihood analysis of fluorescence data. Methods Enzymol. 1992;210:200–237. doi: 10.1016/0076-6879(92)10012-3. [DOI] [PubMed] [Google Scholar]
- Bajzer Z., Zelić A., Prendergast F. G. Analytical approach to the recovery of short fluorescence lifetimes from fluorescence decay curves. Biophys J. 1995 Sep;69(3):1148–1161. doi: 10.1016/S0006-3495(95)79989-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bialik C. N., Wolf B., Rachofsky E. L., Ross J. B., Laws W. R. Dynamics of biomolecules: assignment of local motions by fluorescence anisotropy decay. Biophys J. 1998 Nov;75(5):2564–2573. doi: 10.1016/s0006-3495(98)77701-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dale R. E., Chen L. A., Brand L. Rotational relaxation of the "microviscosity" probe diphenylhexatriene in paraffin oil and egg lecithin vesicles. J Biol Chem. 1977 Nov 10;252(21):7500–7510. [PubMed] [Google Scholar]
- Digris A. V., Skakoun V. V., Novikov E. G., van Hoek A., Claiborne A., Visser A. J. Thermal stability of a flavoprotein assessed from associative analysis of polarized time-resolved fluorescence spectroscopy. Eur Biophys J. 1999;28(6):526–531. doi: 10.1007/s002490050235. [DOI] [PubMed] [Google Scholar]
- Döring K., Beck W., Konermann L., Jähnig F. The use of a long-lifetime component of tryptophan to detect slow orientational fluctuations of proteins. Biophys J. 1997 Jan;72(1):326–334. doi: 10.1016/S0006-3495(97)78671-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grinvald A., Steinberg I. Z. On the analysis of fluorescence decay kinetics by the method of least-squares. Anal Biochem. 1974 Jun;59(2):583–598. doi: 10.1016/0003-2697(74)90312-1. [DOI] [PubMed] [Google Scholar]
- Ludescher R. D., Peting L., Hudson S., Hudson B. Time-resolved fluorescence anisotropy for systems with lifetime and dynamic heterogeneity. Biophys Chem. 1987 Oct;28(1):59–75. doi: 10.1016/0301-4622(87)80075-3. [DOI] [PubMed] [Google Scholar]
- MacKerell A. D., Jr, Rigler R., Nilsson L., Hahn U., Saenger W. Protein dynamics. A time-resolved fluorescence, energetic and molecular dynamics study of ribonuclease T1. Biophys Chem. 1987 May 9;26(2-3):247–261. doi: 10.1016/0301-4622(87)80027-3. [DOI] [PubMed] [Google Scholar]
- Moncrieffe M. C., Juranic N., Kemple M. D., Potter J. D., Macura S., Prendergast F. G. Structure-fluorescence correlations in a single tryptophan mutant of carp parvalbumin: solution structure, backbone and side-chain dynamics. J Mol Biol. 2000 Mar 17;297(1):147–163. doi: 10.1006/jmbi.2000.3549. [DOI] [PubMed] [Google Scholar]
- Periasamy N. Analysis of fluorescence decay by the nonlinear least squares method. Biophys J. 1988 Nov;54(5):961–967. doi: 10.1016/S0006-3495(88)83032-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rigler R., Ehrenberg M. Molecular interactions and structure as analysed by fluorescence relaxation spectroscopy. Q Rev Biophys. 1973 May;6(2):139–199. doi: 10.1017/s003358350000113x. [DOI] [PubMed] [Google Scholar]
- Silva N. D., Jr, Prendergast F. G. Tryptophan dynamics of the FK506 binding protein: time-resolved fluorescence and simulations. Biophys J. 1996 Mar;70(3):1122–1137. doi: 10.1016/S0006-3495(96)79706-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wahl P. Analysis of fluorescence anisotropy decays by a least square method. Biophys Chem. 1979 Jul;10(1):91–104. doi: 10.1016/0301-4622(79)80009-5. [DOI] [PubMed] [Google Scholar]