Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Sep;81(3):1786–1792. doi: 10.1016/S0006-3495(01)75829-8

Cell traction forces on soft biomaterials. I. Microrheology of type I collagen gels.

D Velegol 1, F Lanni 1
PMCID: PMC1301653  PMID: 11509388

Abstract

A laser-trap microrheometry technique was used to determine the local shear moduli of Type I collagen gels. Embedded 2.1 microm polystyrene latex particles were displaced 10-100 nm using a near-infrared laser trap with a trap constant of 0.0001 N/m. The trap was oscillated transversely +/- 200 nm using a refractive glass plate mounted on a galvanometric scanner. The displacement of the microspheres was in phase with the movement of the laser trap at frequencies less than 1 rad/s, indicating that at least locally, the gels behaved as elastic media. The local shear modulus was measured at various positions throughout the gel, and, for gels at 2.3 mg/mL and 37 degrees C, values ranged from G = 3 to 80 Pa. The average shear modulus G = 55 Pa, which compares well with measurements from parallel plate rheometry.

Full Text

The Full Text of this article is available as a PDF (154.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barocas V. H., Moon A. G., Tranquillo R. T. The fibroblast-populated collagen microsphere assay of cell traction force--Part 2: Measurement of the cell traction parameter. J Biomech Eng. 1995 May;117(2):161–170. doi: 10.1115/1.2795998. [DOI] [PubMed] [Google Scholar]
  2. Barocas V. H., Tranquillo R. T. An anisotropic biphasic theory of tissue-equivalent mechanics: the interplay among cell traction, fibrillar network deformation, fibril alignment, and cell contact guidance. J Biomech Eng. 1997 May;119(2):137–145. doi: 10.1115/1.2796072. [DOI] [PubMed] [Google Scholar]
  3. Bell E., Ivarsson B., Merrill C. Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1274–1278. doi: 10.1073/pnas.76.3.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crocker J. C., Valentine M. T., Weeks E. R., Gisler T., Kaplan P. D., Yodh A. G., Weitz D. A. Two-point microrheology of inhomogeneous soft materials. Phys Rev Lett. 2000 Jul 24;85(4):888–891. doi: 10.1103/PhysRevLett.85.888. [DOI] [PubMed] [Google Scholar]
  5. Dembo M., Oliver T., Ishihara A., Jacobson K. Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys J. 1996 Apr;70(4):2008–2022. doi: 10.1016/S0006-3495(96)79767-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dembo M., Wang Y. L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys J. 1999 Apr;76(4):2307–2316. doi: 10.1016/S0006-3495(99)77386-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dickinson R. B., Guido S., Tranquillo R. T. Biased cell migration of fibroblasts exhibiting contact guidance in oriented collagen gels. Ann Biomed Eng. 1994 Jul-Aug;22(4):342–356. doi: 10.1007/BF02368241. [DOI] [PubMed] [Google Scholar]
  8. Djabourov M., Lechaire J. P., Gaill F. Structure and rheology of gelatin and collagen gels. Biorheology. 1993 May-Aug;30(3-4):191–205. doi: 10.3233/bir-1993-303-405. [DOI] [PubMed] [Google Scholar]
  9. Elsdale T., Bard J. Cellular interactions in mass cultures of human diploid fibroblasts. Nature. 1972 Mar 24;236(5343):152–155. doi: 10.1038/236152a0. [DOI] [PubMed] [Google Scholar]
  10. Gelles J., Schnapp B. J., Sheetz M. P. Tracking kinesin-driven movements with nanometre-scale precision. Nature. 1988 Feb 4;331(6155):450–453. doi: 10.1038/331450a0. [DOI] [PubMed] [Google Scholar]
  11. Gilai A., Parnas I. Electromechanical coupling in tubular muscle fibers. I. The organization of tubular muscle fibers in the scorpion Leiurus quinquestriatus. J Cell Biol. 1972 Mar;52(3):626–638. doi: 10.1083/jcb.52.3.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guilford W. H., Gore R. W. A novel remote-sensing isometric force transducer for micromechanics studies. Am J Physiol. 1992 Sep;263(3 Pt 1):C700–C707. doi: 10.1152/ajpcell.1992.263.3.C700. [DOI] [PubMed] [Google Scholar]
  13. Hsu S., Jamieson A. M., Blackwell J. Viscoelastic studies of extracellular matrix interactions in a model native collagen gel system. Biorheology. 1994 Jan-Feb;31(1):21–36. doi: 10.3233/bir-1994-31103. [DOI] [PubMed] [Google Scholar]
  14. Kuo S. C., Gelles J., Steuer E., Sheetz M. P. A model for kinesin movement from nanometer-level movements of kinesin and cytoplasmic dynein and force measurements. J Cell Sci Suppl. 1991;14:135–138. doi: 10.1242/jcs.1991.supplement_14.27. [DOI] [PubMed] [Google Scholar]
  15. Mason TG, Weitz DA. Linear viscoelasticity of colloidal hard sphere suspensions near the glass transition. Phys Rev Lett. 1995 Oct 2;75(14):2770–2773. doi: 10.1103/PhysRevLett.75.2770. [DOI] [PubMed] [Google Scholar]
  16. Mason TG, Weitz DA. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys Rev Lett. 1995 Feb 13;74(7):1250–1253. doi: 10.1103/PhysRevLett.74.1250. [DOI] [PubMed] [Google Scholar]
  17. Newman S., Cloître M., Allain C., Forgacs G., Beysens D. Viscosity and elasticity during collagen assembly in vitro: relevance to matrix-driven translocation. Biopolymers. 1997 Mar;41(3):337–347. doi: 10.1002/(SICI)1097-0282(199703)41:3%3C337::AID-BIP9%3E3.0.CO;2-T. [DOI] [PubMed] [Google Scholar]
  18. Svoboda K., Block S. M. Biological applications of optical forces. Annu Rev Biophys Biomol Struct. 1994;23:247–285. doi: 10.1146/annurev.bb.23.060194.001335. [DOI] [PubMed] [Google Scholar]
  19. Ziemann F., Rädler J., Sackmann E. Local measurements of viscoelastic moduli of entangled actin networks using an oscillating magnetic bead micro-rheometer. Biophys J. 1994 Jun;66(6):2210–2216. doi: 10.1016/S0006-3495(94)81017-3. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES