Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Sep;81(3):1805–1822. doi: 10.1016/S0006-3495(01)75831-6

A mathematical model of the kinetics of beta-amyloid fibril growth from the denatured state.

M M Pallitto 1, R M Murphy 1
PMCID: PMC1301655  PMID: 11509390

Abstract

Spontaneous conversion of beta-amyloid peptide (Abeta) from soluble monomer to insoluble fibril may underlie the neurodegeneration associated with Alzheimer's disease. A complete description of Abeta self-association kinetics requires identification of the oligomeric species present and the pathway of association, as well as quantitation of rate constants and reaction order. Abeta was rendered monomeric and denatured by dissolution in 8 M urea, pH 10. "Refolding" and fibrillization were initiated by rapid dilution into phosphate-buffered saline, pH 7.4. The kinetics of growth were followed at three different concentrations, using size exclusion chromatography, dynamic light scattering, and static light scattering. A multi-step pathway for fibril formation and growth was postulated. This pathway included 1) rapid commitment to either stable monomer/dimer or unstable intermediate, 2) cooperative association of intermediate into a multimeric "nucleus," 3) elongation of the "nucleus" into filaments via addition of intermediate, 4) lateral aggregation of filaments into fibrils, and 5) fibril elongation via end-to-end association. Differential and algebraic equations describing this kinetic pathway were derived, and model parameters were determined by fitting the data. The utility of the model for identifying toxic Abeta oligomeric specie(s) is demonstrated. The model should prove useful for designing compounds that inhibit Abeta aggregation and/or toxicity.

Full Text

The Full Text of this article is available as a PDF (281.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrow C. J., Yasuda A., Kenny P. T., Zagorski M. G. Solution conformations and aggregational properties of synthetic amyloid beta-peptides of Alzheimer's disease. Analysis of circular dichroism spectra. J Mol Biol. 1992 Jun 20;225(4):1075–1093. doi: 10.1016/0022-2836(92)90106-t. [DOI] [PubMed] [Google Scholar]
  2. Beffert U., Poirier J. ApoE associated with lipid has a reduced capacity to inhibit beta-amyloid fibril formation. Neuroreport. 1998 Oct 5;9(14):3321–3323. doi: 10.1097/00001756-199810050-00031. [DOI] [PubMed] [Google Scholar]
  3. Burdick D., Soreghan B., Kwon M., Kosmoski J., Knauer M., Henschen A., Yates J., Cotman C., Glabe C. Assembly and aggregation properties of synthetic Alzheimer's A4/beta amyloid peptide analogs. J Biol Chem. 1992 Jan 5;267(1):546–554. [PubMed] [Google Scholar]
  4. Bush A. I., Pettingell W. H., Multhaup G., d Paradis M., Vonsattel J. P., Gusella J. F., Beyreuther K., Masters C. L., Tanzi R. E. Rapid induction of Alzheimer A beta amyloid formation by zinc. Science. 1994 Sep 2;265(5177):1464–1467. doi: 10.1126/science.8073293. [DOI] [PubMed] [Google Scholar]
  5. Chiti F., Taddei N., Bucciantini M., White P., Ramponi G., Dobson C. M. Mutational analysis of the propensity for amyloid formation by a globular protein. EMBO J. 2000 Apr 3;19(7):1441–1449. doi: 10.1093/emboj/19.7.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Choo-Smith L. P., Surewicz W. K. The interaction between Alzheimer amyloid beta(1-40) peptide and ganglioside GM1-containing membranes. FEBS Lett. 1997 Feb 3;402(2-3):95–98. doi: 10.1016/s0014-5793(96)01504-9. [DOI] [PubMed] [Google Scholar]
  7. Esler W. P., Stimson E. R., Jennings J. M., Vinters H. V., Ghilardi J. R., Lee J. P., Mantyh P. W., Maggio J. E. Alzheimer's disease amyloid propagation by a template-dependent dock-lock mechanism. Biochemistry. 2000 May 30;39(21):6288–6295. doi: 10.1021/bi992933h. [DOI] [PubMed] [Google Scholar]
  8. Findeis M. A., Musso G. M., Arico-Muendel C. C., Benjamin H. W., Hundal A. M., Lee J. J., Chin J., Kelley M., Wakefield J., Hayward N. J. Modified-peptide inhibitors of amyloid beta-peptide polymerization. Biochemistry. 1999 May 25;38(21):6791–6800. doi: 10.1021/bi982824n. [DOI] [PubMed] [Google Scholar]
  9. Fraser P. E., Duffy L. K., O'Malley M. B., Nguyen J., Inouye H., Kirschner D. A. Morphology and antibody recognition of synthetic beta-amyloid peptides. J Neurosci Res. 1991 Apr;28(4):474–485. doi: 10.1002/jnr.490280404. [DOI] [PubMed] [Google Scholar]
  10. Games D., Adams D., Alessandrini R., Barbour R., Berthelette P., Blackwell C., Carr T., Clemens J., Donaldson T., Gillespie F. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein. Nature. 1995 Feb 9;373(6514):523–527. doi: 10.1038/373523a0. [DOI] [PubMed] [Google Scholar]
  11. Ghanta J., Shen C. L., Kiessling L. L., Murphy R. M. A strategy for designing inhibitors of beta-amyloid toxicity. J Biol Chem. 1996 Nov 22;271(47):29525–29528. doi: 10.1074/jbc.271.47.29525. [DOI] [PubMed] [Google Scholar]
  12. Gibbons D. L., Horowitz P. M. Exposure of hydrophobic surfaces on the chaperonin GroEL oligomer by protonation or modification of His-401. J Biol Chem. 1995 Mar 31;270(13):7335–7340. doi: 10.1074/jbc.270.13.7335. [DOI] [PubMed] [Google Scholar]
  13. Glenner G. G., Wong C. W. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun. 1984 Aug 16;122(3):1131–1135. doi: 10.1016/0006-291x(84)91209-9. [DOI] [PubMed] [Google Scholar]
  14. Goldberg M. E., Rudolph R., Jaenicke R. A kinetic study of the competition between renaturation and aggregation during the refolding of denatured-reduced egg white lysozyme. Biochemistry. 1991 Mar 19;30(11):2790–2797. doi: 10.1021/bi00225a008. [DOI] [PubMed] [Google Scholar]
  15. Harper J. D., Wong S. S., Lieber C. M., Lansbury P. T., Jr Assembly of A beta amyloid protofibrils: an in vitro model for a possible early event in Alzheimer's disease. Biochemistry. 1999 Jul 13;38(28):8972–8980. doi: 10.1021/bi9904149. [DOI] [PubMed] [Google Scholar]
  16. Harper J. D., Wong S. S., Lieber C. M., Lansbury P. T. Observation of metastable Abeta amyloid protofibrils by atomic force microscopy. Chem Biol. 1997 Feb;4(2):119–125. doi: 10.1016/s1074-5521(97)90255-6. [DOI] [PubMed] [Google Scholar]
  17. Hartley D. M., Walsh D. M., Ye C. P., Diehl T., Vasquez S., Vassilev P. M., Teplow D. B., Selkoe D. J. Protofibrillar intermediates of amyloid beta-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J Neurosci. 1999 Oct 15;19(20):8876–8884. doi: 10.1523/JNEUROSCI.19-20-08876.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hill T. L. Length dependence of rate constants for end-to-end association and dissociation of equilibrium linear aggregates. Biophys J. 1983 Nov;44(2):285–288. doi: 10.1016/S0006-3495(83)84301-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Holcomb L., Gordon M. N., McGowan E., Yu X., Benkovic S., Jantzen P., Wright K., Saad I., Mueller R., Morgan D. Accelerated Alzheimer-type phenotype in transgenic mice carrying both mutant amyloid precursor protein and presenilin 1 transgenes. Nat Med. 1998 Jan;4(1):97–100. doi: 10.1038/nm0198-097. [DOI] [PubMed] [Google Scholar]
  20. Howlett D. R., George A. R., Owen D. E., Ward R. V., Markwell R. E. Common structural features determine the effectiveness of carvedilol, daunomycin and rolitetracycline as inhibitors of Alzheimer beta-amyloid fibril formation. Biochem J. 1999 Oct 15;343(Pt 2):419–423. [PMC free article] [PubMed] [Google Scholar]
  21. Hsiao K., Chapman P., Nilsen S., Eckman C., Harigaya Y., Younkin S., Yang F., Cole G. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science. 1996 Oct 4;274(5284):99–102. doi: 10.1126/science.274.5284.99. [DOI] [PubMed] [Google Scholar]
  22. Huang T. H., Yang D. S., Plaskos N. P., Go S., Yip C. M., Fraser P. E., Chakrabartty A. Structural studies of soluble oligomers of the Alzheimer beta-amyloid peptide. J Mol Biol. 2000 Mar 17;297(1):73–87. doi: 10.1006/jmbi.2000.3559. [DOI] [PubMed] [Google Scholar]
  23. Hughes S. R., Khorkova O., Goyal S., Knaeblein J., Heroux J., Riedel N. G., Sahasrabudhe S. Alpha2-macroglobulin associates with beta-amyloid peptide and prevents fibril formation. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3275–3280. doi: 10.1073/pnas.95.6.3275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jarrett J. T., Berger E. P., Lansbury P. T., Jr The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry. 1993 May 11;32(18):4693–4697. doi: 10.1021/bi00069a001. [DOI] [PubMed] [Google Scholar]
  25. Joachim C. L., Selkoe D. J. The seminal role of beta-amyloid in the pathogenesis of Alzheimer disease. Alzheimer Dis Assoc Disord. 1992 Spring;6(1):7–34. doi: 10.1097/00002093-199205000-00003. [DOI] [PubMed] [Google Scholar]
  26. Kang J., Lemaire H. G., Unterbeck A., Salbaum J. M., Masters C. L., Grzeschik K. H., Multhaup G., Beyreuther K., Müller-Hill B. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature. 1987 Feb 19;325(6106):733–736. doi: 10.1038/325733a0. [DOI] [PubMed] [Google Scholar]
  27. Koo E. H., Lansbury P. T., Jr, Kelly J. W. Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proc Natl Acad Sci U S A. 1999 Aug 31;96(18):9989–9990. doi: 10.1073/pnas.96.18.9989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kowalewski T., Holtzman D. M. In situ atomic force microscopy study of Alzheimer's beta-amyloid peptide on different substrates: new insights into mechanism of beta-sheet formation. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3688–3693. doi: 10.1073/pnas.96.7.3688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kremer J. J., Pallitto M. M., Sklansky D. J., Murphy R. M. Correlation of beta-amyloid aggregate size and hydrophobicity with decreased bilayer fluidity of model membranes. Biochemistry. 2000 Aug 22;39(33):10309–10318. doi: 10.1021/bi0001980. [DOI] [PubMed] [Google Scholar]
  30. Kuner P., Bohrmann B., Tjernberg L. O., Näslund J., Huber G., Celenk S., Grüninger-Leitch F., Richards J. G., Jakob-Roetne R., Kemp J. A. Controlling polymerization of beta-amyloid and prion-derived peptides with synthetic small molecule ligands. J Biol Chem. 2000 Jan 21;275(3):1673–1678. doi: 10.1074/jbc.275.3.1673. [DOI] [PubMed] [Google Scholar]
  31. Lambert M. P., Barlow A. K., Chromy B. A., Edwards C., Freed R., Liosatos M., Morgan T. E., Rozovsky I., Trommer B., Viola K. L. Diffusible, nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc Natl Acad Sci U S A. 1998 May 26;95(11):6448–6453. doi: 10.1073/pnas.95.11.6448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Lansbury P. T., Jr Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc Natl Acad Sci U S A. 1999 Mar 30;96(7):3342–3344. doi: 10.1073/pnas.96.7.3342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Lashuel H. A., Wurth C., Woo L., Kelly J. W. The most pathogenic transthyretin variant, L55P, forms amyloid fibrils under acidic conditions and protofilaments under physiological conditions. Biochemistry. 1999 Oct 12;38(41):13560–13573. doi: 10.1021/bi991021c. [DOI] [PubMed] [Google Scholar]
  34. Lomakin A., Chung D. S., Benedek G. B., Kirschner D. A., Teplow D. B. On the nucleation and growth of amyloid beta-protein fibrils: detection of nuclei and quantitation of rate constants. Proc Natl Acad Sci U S A. 1996 Feb 6;93(3):1125–1129. doi: 10.1073/pnas.93.3.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Lomakin A., Teplow D. B., Kirschner D. A., Benedek G. B. Kinetic theory of fibrillogenesis of amyloid beta-protein. Proc Natl Acad Sci U S A. 1997 Jul 22;94(15):7942–7947. doi: 10.1073/pnas.94.15.7942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Lorenzo A., Yankner B. A. Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12243–12247. doi: 10.1073/pnas.91.25.12243. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Lowe T. L., Strzelec A., Kiessling L. L., Murphy R. M. Structure-function relationships for inhibitors of beta-amyloid toxicity containing the recognition sequence KLVFF. Biochemistry. 2001 Jul 3;40(26):7882–7889. doi: 10.1021/bi002734u. [DOI] [PubMed] [Google Scholar]
  38. Ma J., Yee A., Brewer H. B., Jr, Das S., Potter H. Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature. 1994 Nov 3;372(6501):92–94. doi: 10.1038/372092a0. [DOI] [PubMed] [Google Scholar]
  39. Malinchik S. B., Inouye H., Szumowski K. E., Kirschner D. A. Structural analysis of Alzheimer's beta(1-40) amyloid: protofilament assembly of tubular fibrils. Biophys J. 1998 Jan;74(1):537–545. doi: 10.1016/S0006-3495(98)77812-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Masters C. L., Simms G., Weinman N. A., Multhaup G., McDonald B. L., Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4245–4249. doi: 10.1073/pnas.82.12.4245. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Mattson M. P., Cheng B., Davis D., Bryant K., Lieberburg I., Rydel R. E. beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci. 1992 Feb;12(2):376–389. doi: 10.1523/JNEUROSCI.12-02-00376.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. McLaurin J., Franklin T., Zhang X., Deng J., Fraser P. E. Interactions of Alzheimer amyloid-beta peptides with glycosaminoglycans effects on fibril nucleation and growth. Eur J Biochem. 1999 Dec;266(3):1101–1110. doi: 10.1046/j.1432-1327.1999.00957.x. [DOI] [PubMed] [Google Scholar]
  43. Murphy R. M., Pallitto M. M. Probing the kinetics of beta-amyloid self-association. J Struct Biol. 2000 Jun;130(2-3):109–122. doi: 10.1006/jsbi.2000.4253. [DOI] [PubMed] [Google Scholar]
  44. Naiki H., Nakakuki K. First-order kinetic model of Alzheimer's beta-amyloid fibril extension in vitro. Lab Invest. 1996 Feb;74(2):374–383. [PubMed] [Google Scholar]
  45. Olesen O. F., Dagø L. High density lipoprotein inhibits assembly of amyloid beta-peptides into fibrils. Biochem Biophys Res Commun. 2000 Apr 2;270(1):62–66. doi: 10.1006/bbrc.2000.2372. [DOI] [PubMed] [Google Scholar]
  46. Pallitto M. M., Ghanta J., Heinzelman P., Kiessling L. L., Murphy R. M. Recognition sequence design for peptidyl modulators of beta-amyloid aggregation and toxicity. Biochemistry. 1999 Mar 23;38(12):3570–3578. doi: 10.1021/bi982119e. [DOI] [PubMed] [Google Scholar]
  47. Pike C. J., Burdick D., Walencewicz A. J., Glabe C. G., Cotman C. W. Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci. 1993 Apr;13(4):1676–1687. doi: 10.1523/JNEUROSCI.13-04-01676.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Roher A. E., Chaney M. O., Kuo Y. M., Webster S. D., Stine W. B., Haverkamp L. J., Woods A. S., Cotter R. J., Tuohy J. M., Krafft G. A. Morphology and toxicity of Abeta-(1-42) dimer derived from neuritic and vascular amyloid deposits of Alzheimer's disease. J Biol Chem. 1996 Aug 23;271(34):20631–20635. doi: 10.1074/jbc.271.34.20631. [DOI] [PubMed] [Google Scholar]
  49. Seilheimer B., Bohrmann B., Bondolfi L., Müller F., Stüber D., Döbeli H. The toxicity of the Alzheimer's beta-amyloid peptide correlates with a distinct fiber morphology. J Struct Biol. 1997 Jun;119(1):59–71. doi: 10.1006/jsbi.1997.3859. [DOI] [PubMed] [Google Scholar]
  50. Shen C. L., Fitzgerald M. C., Murphy R. M. Effect of acid predissolution on fibril size and fibril flexibility of synthetic beta-amyloid peptide. Biophys J. 1994 Sep;67(3):1238–1246. doi: 10.1016/S0006-3495(94)80593-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Shen C. L., Murphy R. M. Solvent effects on self-assembly of beta-amyloid peptide. Biophys J. 1995 Aug;69(2):640–651. doi: 10.1016/S0006-3495(95)79940-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Simmons L. K., May P. C., Tomaselli K. J., Rydel R. E., Fuson K. S., Brigham E. F., Wright S., Lieberburg I., Becker G. W., Brems D. N. Secondary structure of amyloid beta peptide correlates with neurotoxic activity in vitro. Mol Pharmacol. 1994 Mar;45(3):373–379. [PubMed] [Google Scholar]
  53. Soreghan B., Kosmoski J., Glabe C. Surfactant properties of Alzheimer's A beta peptides and the mechanism of amyloid aggregation. J Biol Chem. 1994 Nov 18;269(46):28551–28554. [PubMed] [Google Scholar]
  54. Soto C., Castaño E. M. The conformation of Alzheimer's beta peptide determines the rate of amyloid formation and its resistance to proteolysis. Biochem J. 1996 Mar 1;314(Pt 2):701–707. doi: 10.1042/bj3140701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Soto C., Kindy M. S., Baumann M., Frangione B. Inhibition of Alzheimer's amyloidosis by peptides that prevent beta-sheet conformation. Biochem Biophys Res Commun. 1996 Sep 24;226(3):672–680. doi: 10.1006/bbrc.1996.1413. [DOI] [PubMed] [Google Scholar]
  56. Stine W. B., Jr, Snyder S. W., Ladror U. S., Wade W. S., Miller M. F., Perun T. J., Holzman T. F., Krafft G. A. The nanometer-scale structure of amyloid-beta visualized by atomic force microscopy. J Protein Chem. 1996 Feb;15(2):193–203. doi: 10.1007/BF01887400. [DOI] [PubMed] [Google Scholar]
  57. Thunecke M., Lobbia A., Kosciessa U., Dyrks T., Oakley A. E., Turner J., Saenger W., Georgalis Y. Aggregation of A beta Alzheimer's disease-related peptide studied by dynamic light scattering. J Pept Res. 1998 Dec;52(6):509–517. doi: 10.1111/j.1399-3011.1998.tb01255.x. [DOI] [PubMed] [Google Scholar]
  58. Tjernberg L. O., Lilliehök C., Callaway D. J., Näslund J., Hahne S., Thyberg J., Terenius L., Nordstedt C. Controlling amyloid beta-peptide fibril formation with protease-stable ligands. J Biol Chem. 1997 May 9;272(19):12601–12605. doi: 10.1074/jbc.272.19.12601. [DOI] [PubMed] [Google Scholar]
  59. Tomski S. J., Murphy R. M. Kinetics of aggregation of synthetic beta-amyloid peptide. Arch Biochem Biophys. 1992 May 1;294(2):630–638. doi: 10.1016/0003-9861(92)90735-f. [DOI] [PubMed] [Google Scholar]
  60. Tseng B. P., Esler W. P., Clish C. B., Stimson E. R., Ghilardi J. R., Vinters H. V., Mantyh P. W., Lee J. P., Maggio J. E. Deposition of monomeric, not oligomeric, Abeta mediates growth of Alzheimer's disease amyloid plaques in human brain preparations. Biochemistry. 1999 Aug 10;38(32):10424–10431. doi: 10.1021/bi990718v. [DOI] [PubMed] [Google Scholar]
  61. Ward R. V., Jennings K. H., Jepras R., Neville W., Owen D. E., Hawkins J., Christie G., Davis J. B., George A., Karran E. H. Fractionation and characterization of oligomeric, protofibrillar and fibrillar forms of beta-amyloid peptide. Biochem J. 2000 May 15;348(Pt 1):137–144. [PMC free article] [PubMed] [Google Scholar]
  62. West M. W., Wang W., Patterson J., Mancias J. D., Beasley J. R., Hecht M. H. De novo amyloid proteins from designed combinatorial libraries. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11211–11216. doi: 10.1073/pnas.96.20.11211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Wood S. J., MacKenzie L., Maleeff B., Hurle M. R., Wetzel R. Selective inhibition of Abeta fibril formation. J Biol Chem. 1996 Feb 23;271(8):4086–4092. doi: 10.1074/jbc.271.8.4086. [DOI] [PubMed] [Google Scholar]
  64. Wujek J. R., Dority M. D., Frederickson R. C., Brunden K. R. Deposits of A beta fibrils are not toxic to cortical and hippocampal neurons in vitro. Neurobiol Aging. 1996 Jan-Feb;17(1):107–113. doi: 10.1016/0197-4580(95)02020-9. [DOI] [PubMed] [Google Scholar]
  65. Yankner B. A., Duffy L. K., Kirschner D. A. Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science. 1990 Oct 12;250(4978):279–282. doi: 10.1126/science.2218531. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES