Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Oct;81(4):1881–1887. doi: 10.1016/S0006-3495(01)75839-0

Hydration heat capacity of nucleic acid constituents determined from the random network model.

B Madan 1, K A Sharp 1
PMCID: PMC1301663  PMID: 11566762

Abstract

The heat capacities of hydration (dCp) of the five nucleic acid bases A, G, C, T, and U, the sugars ribose and deoxyribose, and the phosphate backbone were determined using Monte Carlo simulations and the random network model. Solute-induced changes in the mean length and root mean square angle of hydrogen bonds between hydration shell waters were used to compute dCp for these solutes. For all solutes the dCp is significantly more positive than predicted from accessible surface area (ASA) models of heat capacity. In ASA models, nitrogen, oxygen, and phosphorus atoms are considered as uniformly polar, therefore making a negative contribution to dCp. However, the simulations show that many of these polar atoms are hydrated by water whose hydrogen bonds are less distorted than in bulk, leading to a positive dCp. This is in contrast to the effect of polar groups seen previously in small molecules and amino acids, which increase the water H-bond distortion, giving negative dCp contributions. Our results imply that dCp accompanying DNA dehydration in DNA-ligand and DNA-protein binding reactions may be significantly more negative than previously believed and that dehydration is a significant contributor to the large decrease in heat capacity seen in experiments.

Full Text

The Full Text of this article is available as a PDF (78.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chalikian T. V., Völker J., Plum G. E., Breslauer K. J. A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):7853–7858. doi: 10.1073/pnas.96.14.7853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Connelly P. R., Thomson J. A., Fitzgibbon M. J., Bruzzese F. J. Probing hydration contributions to the thermodynamics of ligand binding by proteins. Enthalpy and heat capacity changes of tacrolimus and rapamycin binding to FK506 binding protein in D2O and H2O. Biochemistry. 1993 Jun 1;32(21):5583–5590. doi: 10.1021/bi00072a013. [DOI] [PubMed] [Google Scholar]
  3. Eisenberg D., McLachlan A. D. Solvation energy in protein folding and binding. Nature. 1986 Jan 16;319(6050):199–203. doi: 10.1038/319199a0. [DOI] [PubMed] [Google Scholar]
  4. Gallagher K., Sharp K. Electrostatic contributions to heat capacity changes of DNA-ligand binding. Biophys J. 1998 Aug;75(2):769–776. doi: 10.1016/S0006-3495(98)77566-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Haltia T., Freire E. Forces and factors that contribute to the structural stability of membrane proteins. Biochim Biophys Acta. 1995 Jul 17;1241(2):295–322. doi: 10.1016/0304-4157(94)00161-6. [DOI] [PubMed] [Google Scholar]
  6. Holbrook J. A., Capp M. W., Saecker R. M., Record M. T., Jr Enthalpy and heat capacity changes for formation of an oligomeric DNA duplex: interpretation in terms of coupled processes of formation and association of single-stranded helices. Biochemistry. 1999 Jun 29;38(26):8409–8422. doi: 10.1021/bi990043w. [DOI] [PubMed] [Google Scholar]
  7. Jin L., Yang J., Carey J. Thermodynamics of ligand binding to trp repressor. Biochemistry. 1993 Jul 20;32(28):7302–7309. doi: 10.1021/bi00079a029. [DOI] [PubMed] [Google Scholar]
  8. Ladbury J. E., Wright J. G., Sturtevant J. M., Sigler P. B. A thermodynamic study of the trp repressor-operator interaction. J Mol Biol. 1994 May 20;238(5):669–681. doi: 10.1006/jmbi.1994.1328. [DOI] [PubMed] [Google Scholar]
  9. Lundbäck T., Cairns C., Gustafsson J. A., Carlstedt-Duke J., Härd T. Thermodynamics of the glucocorticoid receptor-DNA interaction: binding of wild-type GR DBD to different response elements. Biochemistry. 1993 May 18;32(19):5074–5082. doi: 10.1021/bi00070a015. [DOI] [PubMed] [Google Scholar]
  10. Lundbäck T., Chang J. F., Phillips K., Luisi B., Ladbury J. E. Characterization of sequence-specific DNA binding by the transcription factor Oct-1. Biochemistry. 2000 Jun 27;39(25):7570–7579. doi: 10.1021/bi000377h. [DOI] [PubMed] [Google Scholar]
  11. Madan B., Sharp K. Changes in water structure induced by a hydrophobic solute probed by simulation of the water hydrogen bond angle and radial distribution functions. Biophys Chem. 1999 Apr 5;78(1-2):33–41. doi: 10.1016/s0301-4622(98)00227-0. [DOI] [PubMed] [Google Scholar]
  12. Makhatadze G. I., Privalov P. L. Heat capacity of proteins. I. Partial molar heat capacity of individual amino acid residues in aqueous solution: hydration effect. J Mol Biol. 1990 May 20;213(2):375–384. doi: 10.1016/S0022-2836(05)80197-4. [DOI] [PubMed] [Google Scholar]
  13. Matulis D., Rouzina I., Bloomfield V. A. Thermodynamics of DNA binding and condensation: isothermal titration calorimetry and electrostatic mechanism. J Mol Biol. 2000 Mar 3;296(4):1053–1063. doi: 10.1006/jmbi.1999.3470. [DOI] [PubMed] [Google Scholar]
  14. Merabet E., Ackers G. K. Calorimetric analysis of lambda cI repressor binding to DNA operator sites. Biochemistry. 1995 Jul 11;34(27):8554–8563. doi: 10.1021/bi00027a005. [DOI] [PubMed] [Google Scholar]
  15. Morton C. J., Ladbury J. E. Water-mediated protein-DNA interactions: the relationship of thermodynamics to structural detail. Protein Sci. 1996 Oct;5(10):2115–2118. doi: 10.1002/pro.5560051018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murphy K. P., Freire E. Thermodynamics of structural stability and cooperative folding behavior in proteins. Adv Protein Chem. 1992;43:313–361. doi: 10.1016/s0065-3233(08)60556-2. [DOI] [PubMed] [Google Scholar]
  17. Murphy K. P., Privalov P. L., Gill S. J. Common features of protein unfolding and dissolution of hydrophobic compounds. Science. 1990 Feb 2;247(4942):559–561. doi: 10.1126/science.2300815. [DOI] [PubMed] [Google Scholar]
  18. Myers J. K., Pace C. N., Scholtz J. M. Denaturant m values and heat capacity changes: relation to changes in accessible surface areas of protein unfolding. Protein Sci. 1995 Oct;4(10):2138–2148. doi: 10.1002/pro.5560041020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Oda M., Furukawa K., Ogata K., Sarai A., Nakamura H. Thermodynamics of specific and non-specific DNA binding by the c-Myb DNA-binding domain. J Mol Biol. 1998 Feb 27;276(3):571–590. doi: 10.1006/jmbi.1997.1564. [DOI] [PubMed] [Google Scholar]
  20. Privalov P. L., Gill S. J. Stability of protein structure and hydrophobic interaction. Adv Protein Chem. 1988;39:191–234. doi: 10.1016/s0065-3233(08)60377-0. [DOI] [PubMed] [Google Scholar]
  21. Privalov P. L., Makhatadze G. I. Heat capacity of proteins. II. Partial molar heat capacity of the unfolded polypeptide chain of proteins: protein unfolding effects. J Mol Biol. 1990 May 20;213(2):385–391. doi: 10.1016/S0022-2836(05)80198-6. [DOI] [PubMed] [Google Scholar]
  22. Ren J., Jenkins T. C., Chaires J. B. Energetics of DNA intercalation reactions. Biochemistry. 2000 Jul 25;39(29):8439–8447. doi: 10.1021/bi000474a. [DOI] [PubMed] [Google Scholar]
  23. Robertson Andrew D., Murphy Kenneth P. Protein Structure and the Energetics of Protein Stability. Chem Rev. 1997 Aug 5;97(5):1251–1268. doi: 10.1021/cr960383c. [DOI] [PubMed] [Google Scholar]
  24. Rouzina I., Bloomfield V. A. Heat capacity effects on the melting of DNA. 1. General aspects. Biophys J. 1999 Dec;77(6):3242–3251. doi: 10.1016/S0006-3495(99)77155-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spolar R. S., Livingstone J. R., Record M. T., Jr Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water. Biochemistry. 1992 Apr 28;31(16):3947–3955. doi: 10.1021/bi00131a009. [DOI] [PubMed] [Google Scholar]
  26. Spolar R. S., Record M. T., Jr Coupling of local folding to site-specific binding of proteins to DNA. Science. 1994 Feb 11;263(5148):777–784. doi: 10.1126/science.8303294. [DOI] [PubMed] [Google Scholar]
  27. Sturtevant J. M. Heat capacity and entropy changes in processes involving proteins. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2236–2240. doi: 10.1073/pnas.74.6.2236. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES