Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Oct;81(4):1960–1969. doi: 10.1016/S0006-3495(01)75847-X

Analytic binding isotherms describing competitive interactions of a protein ligand with specific and nonspecific sites on the same DNA oligomer.

O V Tsodikov 1, J A Holbrook 1, I A Shkel 1, M T Record Jr 1
PMCID: PMC1301671  PMID: 11566770

Abstract

Many studies of specific protein-nucleic acid binding use short oligonucleotides or restriction fragments, in part to minimize the potential for nonspecific binding of the protein. However, when the specificity ratio is low, multiple nonspecifically bound proteins may occupy the region of DNA corresponding to one specific site; this situation was encountered in our recent calorimetric study of binding of integration host factor (IHF) protein to its specific 34-bp H' DNA site. Here, beginning from the analytical McGhee and von Hippel infinite-lattice nonspecific binding isotherm, we derive a novel analytic isotherm for nonspecific binding of a ligand to a finite lattice. This isotherm is an excellent approximation to the exact factorial-based Epstein finite lattice isotherm even for short lattices and therefore is of great practical significance for analysis of experimental data and for analytic theory. Using this isotherm, we develop an analytic treatment of the competition between specific and nonspecific binding of a large ligand to the same finite lattice (i.e., DNA oligomer) containing one specific and multiple overlapping nonspecific binding sites. Analysis of calorimetric data for IHF-H' DNA binding using this treatment yields enthalpies and binding constants for both specific and nonspecific binding and the nonspecific site size. This novel analysis demonstrates the potential contribution of nonspecific binding to the observed thermodynamics of specific binding, even with very short DNA oligomers, and the need for reverse (constant protein) titrations or titrations with nonspecific DNA to resolve specific and nonspecific contributions. The competition treatment is useful in analyzing low-specificity systems, including those where specificity is weakened by mutations or the absence of specificity factors.

Full Text

The Full Text of this article is available as a PDF (127.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bujalowski W., Lohman T. M., Anderson C. F. On the cooperative binding of large ligands to a one-dimensional homogeneous lattice: the generalized three-state lattice model. Biopolymers. 1989 Sep;28(9):1637–1643. doi: 10.1002/bip.360280912. [DOI] [PubMed] [Google Scholar]
  2. Epstein I. R. Cooperative and non-cooperative binding of large ligands to a finite one-dimensional lattice. A model for ligand-oligonucleotide interactions. Biophys Chem. 1978 Sep;8(4):327–339. doi: 10.1016/0301-4622(78)80015-5. [DOI] [PubMed] [Google Scholar]
  3. Ferrari M. E., Bujalowski W., Lohman T. M. Co-operative binding of Escherichia coli SSB tetramers to single-stranded DNA in the (SSB)35 binding mode. J Mol Biol. 1994 Feb 11;236(1):106–123. doi: 10.1006/jmbi.1994.1122. [DOI] [PubMed] [Google Scholar]
  4. Holbrook J. A., Tsodikov O. V., Saecker R. M., Record M. T., Jr Specific and non-specific interactions of integration host factor with DNA: thermodynamic evidence for disruption of multiple IHF surface salt-bridges coupled to DNA binding. J Mol Biol. 2001 Jul 6;310(2):379–401. doi: 10.1006/jmbi.2001.4768. [DOI] [PubMed] [Google Scholar]
  5. Jezewska M. J., Bujalowski W. Interactions of Escherichia coli replicative helicase PriA protein with single-stranded DNA. Biochemistry. 2000 Aug 29;39(34):10454–10467. doi: 10.1021/bi001113y. [DOI] [PubMed] [Google Scholar]
  6. Jezewska M. J., Rajendran S., Bujalowski W. Interactions of the 8-kDa domain of rat DNA polymerase beta with DNA. Biochemistry. 2001 Mar 20;40(11):3295–3307. doi: 10.1021/bi002749s. [DOI] [PubMed] [Google Scholar]
  7. Kao-Huang Y., Revzin A., Butler A. P., O'Conner P., Noble D. W., von Hippel P. H. Nonspecific DNA binding of genome-regulating proteins as a biological control mechanism: measurement of DNA-bound Escherichia coli lac repressor in vivo. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4228–4232. doi: 10.1073/pnas.74.10.4228. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lundbäck T., Hansson H., Knapp S., Ladenstein R., Härd T. Thermodynamic characterization of non-sequence-specific DNA-binding by the Sso7d protein from Sulfolobus solfataricus. J Mol Biol. 1998 Mar 6;276(4):775–786. doi: 10.1006/jmbi.1997.1558. [DOI] [PubMed] [Google Scholar]
  9. McAfee J. G., Edmondson S. P., Zegar I., Shriver J. W. Equilibrium DNA binding of Sac7d protein from the hyperthermophile Sulfolobus acidocaldarius: fluorescence and circular dichroism studies. Biochemistry. 1996 Apr 2;35(13):4034–4045. doi: 10.1021/bi952555q. [DOI] [PubMed] [Google Scholar]
  10. McGhee J. D., von Hippel P. H. Theoretical aspects of DNA-protein interactions: co-operative and non-co-operative binding of large ligands to a one-dimensional homogeneous lattice. J Mol Biol. 1974 Jun 25;86(2):469–489. doi: 10.1016/0022-2836(74)90031-x. [DOI] [PubMed] [Google Scholar]
  11. Munro P. D., Jackson C. M., Winzor D. J. Consequences of the non-specific binding of a protein to a linear polymer: reconciliation of stoichiometric and equilibrium titration data for the thrombin-heparin interaction. J Theor Biol. 2000 Apr 21;203(4):407–418. doi: 10.1006/jtbi.2000.1099. [DOI] [PubMed] [Google Scholar]
  12. Murtin C., Engelhorn M., Geiselmann J., Boccard F. A quantitative UV laser footprinting analysis of the interaction of IHF with specific binding sites: re-evaluation of the effective concentration of IHF in the cell. J Mol Biol. 1998 Dec 11;284(4):949–961. doi: 10.1006/jmbi.1998.2256. [DOI] [PubMed] [Google Scholar]
  13. Padmanabhan S., Zhang W., Capp M. W., Anderson C. F., Record M. T., Jr Binding of cationic (+4) alanine- and glycine-containing oligopeptides to double-stranded DNA: thermodynamic analysis of effects of coulombic interactions and alpha-helix induction. Biochemistry. 1997 Apr 29;36(17):5193–5206. doi: 10.1021/bi962927a. [DOI] [PubMed] [Google Scholar]
  14. Rajendran S., Jezewska M. J., Bujalowski W. Human DNA polymerase beta recognizes single-stranded DNA using two different binding modes. J Biol Chem. 1998 Nov 20;273(47):31021–31031. doi: 10.1074/jbc.273.47.31021. [DOI] [PubMed] [Google Scholar]
  15. Revzin A., von Hippel P. H. Direct measurement of association constants for the binding of Escherichia coli lac repressor to non-operator DNA. Biochemistry. 1977 Nov 1;16(22):4769–4776. doi: 10.1021/bi00641a002. [DOI] [PubMed] [Google Scholar]
  16. Schwarz G., Stankowski S. Linear cooperative binding of large ligands involving mutual exclusion of different binding modes. Biophys Chem. 1979 Sep;10(2):173–181. doi: 10.1016/0301-4622(79)85037-1. [DOI] [PubMed] [Google Scholar]
  17. Tlsty T. D. Normal diploid human and rodent cells lack a detectable frequency of gene amplification. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3132–3136. doi: 10.1073/pnas.87.8.3132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Veal J. M., Rill R. L. Noncovalent DNA binding of bis(1,10-phenanthroline)copper(I) and related compounds. Biochemistry. 1991 Jan 29;30(4):1132–1140. doi: 10.1021/bi00218a035. [DOI] [PubMed] [Google Scholar]
  19. Wong I., Lohman T. M. Linkage of protein assembly to protein-DNA binding. Methods Enzymol. 1995;259:95–127. doi: 10.1016/0076-6879(95)59040-4. [DOI] [PubMed] [Google Scholar]
  20. Zhang W., Ni H., Capp M. W., Anderson C. F., Lohman T. M., Record M. T., Jr The importance of coulombic end effects: experimental characterization of the effects of oligonucleotide flanking charges on the strength and salt dependence of oligocation (L8+) binding to single-stranded DNA oligomers. Biophys J. 1999 Feb;76(2):1008–1017. doi: 10.1016/S0006-3495(99)77265-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. von Hippel P. H., Revzin A., Gross C. A., Wang A. C. Non-specific DNA binding of genome regulating proteins as a biological control mechanism: I. The lac operon: equilibrium aspects. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4808–4812. doi: 10.1073/pnas.71.12.4808. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES