Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Oct;81(4):2001–2009. doi: 10.1016/S0006-3495(01)75850-X

Tyrosine sulfation enhances but is not required for PSGL-1 rolling adhesion on P-selectin.

S D Rodgers 1, R T Camphausen 1, D A Hammer 1
PMCID: PMC1301674  PMID: 11566773

Abstract

P-selectin glycoprotein ligand-1 (PSGL-1) is a large (240 kDa) glycoprotein found on the surface of nearly all leukocytes. The mature molecule is decorated with multiple N- and O-linked glycans and displays copies of the tetrasaccharide sialyl-Lewis(x) (sLe(X)), as well as a cluster of three tyrosine sulfate (tyr-SO(3)) groups near the N-terminus of the processed protein. Previous studies have suggested that PSGL-1 needs to be tyrosine-sulfated, in addition to glycosylated with sLe(X), to successfully interact with P-selectin. To better understand how biochemical features of the PSGL-1 ligand are related to its adhesion phenotype, we have measured the dynamics of adhesion under flow of a series of well-defined PSGL-1 variants that differ in their biochemical modification, to both P- and E-selectin-coated substrates. These variants are distinct PSGL-1 peptides: one that possesses sLe(X) in conjunction with three N-terminal tyr-SO(3) groups (SGP3), one that possesses sLe(X) without tyrosine sulfation (GP1), and one that lacks sLe(X) but has three N-terminal tyr-SO(3) groups (SP3). Although all peptides expressing sLe(X), tyr-SO(3), or both supported some form of rolling adhesion on P-selectin, only peptides expressing sLe(X) groups showed rolling adhesion on E-selectin. On P-selectin, the PSGL-1 peptides demonstrated a decreasing strength of adhesion in the following order: SGP3 > GP1 > SP3. Robust, rolling adhesion on P-selectin was mediated by the GP1 peptide, despite its lack of tyrosine sulfation. However, the addition of tyrosine sulfation to glycosylated peptides (SGP3) creates a super ligand for P-selectin that supports slower rolling adhesion at all shear rates and supports rolling adhesion at much higher shear rates. Tyrosine sulfation has no similar effect on PSGL-1 rolling on E-selectin. Such functional distinctions in rolling dynamics are uniquely realized with a cell-free system, which permits precise, unambiguous identification of the functional activity of adhesive ligands. These findings are consistent with structural and functional characterizations of the interactions between these peptides and E- and P-selectin published recently.

Full Text

The Full Text of this article is available as a PDF (95.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alon R., Hammer D. A., Springer T. A. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature. 1995 Apr 6;374(6522):539–542. doi: 10.1038/374539a0. [DOI] [PubMed] [Google Scholar]
  2. Aruffo A., Kolanus W., Walz G., Fredman P., Seed B. CD62/P-selectin recognition of myeloid and tumor cell sulfatides. Cell. 1991 Oct 4;67(1):35–44. doi: 10.1016/0092-8674(91)90570-o. [DOI] [PubMed] [Google Scholar]
  3. Berg E. L., Magnani J., Warnock R. A., Robinson M. K., Butcher E. C. Comparison of L-selectin and E-selectin ligand specificities: the L-selectin can bind the E-selectin ligands sialyl Le(x) and sialyl Le(a). Biochem Biophys Res Commun. 1992 Apr 30;184(2):1048–1055. doi: 10.1016/0006-291x(92)90697-j. [DOI] [PubMed] [Google Scholar]
  4. Berg E. L., Robinson M. K., Mansson O., Butcher E. C., Magnani J. L. A carbohydrate domain common to both sialyl Le(a) and sialyl Le(X) is recognized by the endothelial cell leukocyte adhesion molecule ELAM-1. J Biol Chem. 1991 Aug 15;266(23):14869–14872. [PubMed] [Google Scholar]
  5. Bevilacqua M. P. Endothelial-leukocyte adhesion molecules. Annu Rev Immunol. 1993;11:767–804. doi: 10.1146/annurev.iy.11.040193.004003. [DOI] [PubMed] [Google Scholar]
  6. Bevilacqua M. P., Nelson R. M. Selectins. J Clin Invest. 1993 Feb;91(2):379–387. doi: 10.1172/JCI116210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bruehl R. E., Moore K. L., Lorant D. E., Borregaard N., Zimmerman G. A., McEver R. P., Bainton D. F. Leukocyte activation induces surface redistribution of P-selectin glycoprotein ligand-1. J Leukoc Biol. 1997 Apr;61(4):489–499. doi: 10.1002/jlb.61.4.489. [DOI] [PubMed] [Google Scholar]
  8. Brunk D. K., Hammer D. A. Quantifying rolling adhesion with a cell-free assay: E-selectin and its carbohydrate ligands. Biophys J. 1997 Jun;72(6):2820–2833. doi: 10.1016/S0006-3495(97)78924-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chen S., Alon R., Fuhlbrigge R. C., Springer T. A. Rolling and transient tethering of leukocytes on antibodies reveal specializations of selectins. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3172–3177. doi: 10.1073/pnas.94.7.3172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Epperson T. K., Patel K. D., McEver R. P., Cummings R. D. Noncovalent association of P-selectin glycoprotein ligand-1 and minimal determinants for binding to P-selectin. J Biol Chem. 2000 Mar 17;275(11):7839–7853. doi: 10.1074/jbc.275.11.7839. [DOI] [PubMed] [Google Scholar]
  11. Evans E., Leung A., Hammer D., Simon S. Chemically distinct transition states govern rapid dissociation of single L-selectin bonds under force. Proc Natl Acad Sci U S A. 2001 Mar 13;98(7):3784–3789. doi: 10.1073/pnas.061324998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Evans E., Ritchie K., Merkel R. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys J. 1995 Jun;68(6):2580–2587. doi: 10.1016/S0006-3495(95)80441-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Foxall C., Watson S. R., Dowbenko D., Fennie C., Lasky L. A., Kiso M., Hasegawa A., Asa D., Brandley B. K. The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis(x) oligosaccharide. J Cell Biol. 1992 May;117(4):895–902. doi: 10.1083/jcb.117.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goetz D. J., Greif D. M., Ding H., Camphausen R. T., Howes S., Comess K. M., Snapp K. R., Kansas G. S., Luscinskas F. W. Isolated P-selectin glycoprotein ligand-1 dynamic adhesion to P- and E-selectin. J Cell Biol. 1997 Apr 21;137(2):509–519. doi: 10.1083/jcb.137.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Greenberg A. W., Brunk D. K., Hammer D. A. Cell-free rolling mediated by L-selectin and sialyl Lewis(x) reveals the shear threshold effect. Biophys J. 2000 Nov;79(5):2391–2402. doi: 10.1016/S0006-3495(00)76484-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hammer D. A., Apte S. M. Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys J. 1992 Jul;63(1):35–57. doi: 10.1016/S0006-3495(92)81577-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Handa K., Nudelman E. D., Stroud M. R., Shiozawa T., Hakomori S. Selectin GMP-140 (CD62; PADGEM) binds to sialosyl-Le(a) and sialosyl-Le(x), and sulfated glycans modulate this binding. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1223–1230. doi: 10.1016/0006-291x(91)92069-v. [DOI] [PubMed] [Google Scholar]
  18. Jung U., Norman K. E., Scharffetter-Kochanek K., Beaudet A. L., Ley K. Transit time of leukocytes rolling through venules controls cytokine-induced inflammatory cell recruitment in vivo. J Clin Invest. 1998 Oct 15;102(8):1526–1533. doi: 10.1172/JCI119893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kumar R., Camphausen R. T., Sullivan F. X., Cumming D. A. Core2 beta-1,6-N-acetylglucosaminyltransferase enzyme activity is critical for P-selectin glycoprotein ligand-1 binding to P-selectin. Blood. 1996 Nov 15;88(10):3872–3879. [PubMed] [Google Scholar]
  20. LaVallie E. R., Rehemtulla A., Racie L. A., DiBlasio E. A., Ferenz C., Grant K. L., Light A., McCoy J. M. Cloning and functional expression of a cDNA encoding the catalytic subunit of bovine enterokinase. J Biol Chem. 1993 Nov 5;268(31):23311–23317. [PubMed] [Google Scholar]
  21. Leppänen A., Mehta P., Ouyang Y. B., Ju T., Helin J., Moore K. L., van Die I., Canfield W. M., McEver R. P., Cummings R. D. A novel glycosulfopeptide binds to P-selectin and inhibits leukocyte adhesion to P-selectin. J Biol Chem. 1999 Aug 27;274(35):24838–24848. doi: 10.1074/jbc.274.35.24838. [DOI] [PubMed] [Google Scholar]
  22. Li F., Wilkins P. P., Crawley S., Weinstein J., Cummings R. D., McEver R. P. Post-translational modifications of recombinant P-selectin glycoprotein ligand-1 required for binding to P- and E-selectin. J Biol Chem. 1996 Feb 9;271(6):3255–3264. [PubMed] [Google Scholar]
  23. Liu W., Ramachandran V., Kang J., Kishimoto T. K., Cummings R. D., McEver R. P. Identification of N-terminal residues on P-selectin glycoprotein ligand-1 required for binding to P-selectin. J Biol Chem. 1998 Mar 20;273(12):7078–7087. doi: 10.1074/jbc.273.12.7078. [DOI] [PubMed] [Google Scholar]
  24. McEver R. P., Cummings R. D. Perspectives series: cell adhesion in vascular biology. Role of PSGL-1 binding to selectins in leukocyte recruitment. J Clin Invest. 1997 Aug 1;100(3):485–491. doi: 10.1172/JCI119556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Merkel R., Nassoy P., Leung A., Ritchie K., Evans E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature. 1999 Jan 7;397(6714):50–53. doi: 10.1038/16219. [DOI] [PubMed] [Google Scholar]
  26. Moore K. L. Structure and function of P-selectin glycoprotein ligand-1. Leuk Lymphoma. 1998 Mar;29(1-2):1–15. doi: 10.3109/10428199809058377. [DOI] [PubMed] [Google Scholar]
  27. Nelson R. M., Dolich S., Aruffo A., Cecconi O., Bevilacqua M. P. Higher-affinity oligosaccharide ligands for E-selectin. J Clin Invest. 1993 Mar;91(3):1157–1166. doi: 10.1172/JCI116275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Patel K. D., Moore K. L., Nollert M. U., McEver R. P. Neutrophils use both shared and distinct mechanisms to adhere to selectins under static and flow conditions. J Clin Invest. 1995 Oct;96(4):1887–1896. doi: 10.1172/JCI118234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Polley M. J., Phillips M. L., Wayner E., Nudelman E., Singhal A. K., Hakomori S., Paulson J. C. CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6224–6228. doi: 10.1073/pnas.88.14.6224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pouyani T., Seed B. PSGL-1 recognition of P-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus. Cell. 1995 Oct 20;83(2):333–343. doi: 10.1016/0092-8674(95)90174-4. [DOI] [PubMed] [Google Scholar]
  31. Ramachandran V., Nollert M. U., Qiu H., Liu W. J., Cummings R. D., Zhu C., McEver R. P. Tyrosine replacement in P-selectin glycoprotein ligand-1 affects distinct kinetic and mechanical properties of bonds with P- and L-selectin. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13771–13776. doi: 10.1073/pnas.96.24.13771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Rodgers S. D., Camphausen R. T., Hammer D. A. Sialyl Lewis(x)-mediated, PSGL-1-independent rolling adhesion on P-selectin. Biophys J. 2000 Aug;79(2):694–706. doi: 10.1016/S0006-3495(00)76328-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rosen S. D., Bertozzi C. R. Two selectins converge on sulphate. Leukocyte adhesion. Curr Biol. 1996 Mar 1;6(3):261–264. doi: 10.1016/s0960-9822(02)00473-6. [DOI] [PubMed] [Google Scholar]
  34. Sako D., Comess K. M., Barone K. M., Camphausen R. T., Cumming D. A., Shaw G. D. A sulfated peptide segment at the amino terminus of PSGL-1 is critical for P-selectin binding. Cell. 1995 Oct 20;83(2):323–331. doi: 10.1016/0092-8674(95)90173-6. [DOI] [PubMed] [Google Scholar]
  35. Smith M. J., Berg E. L., Lawrence M. B. A direct comparison of selectin-mediated transient, adhesive events using high temporal resolution. Biophys J. 1999 Dec;77(6):3371–3383. doi: 10.1016/S0006-3495(99)77169-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Somers W. S., Tang J., Shaw G. D., Camphausen R. T. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell. 2000 Oct 27;103(3):467–479. doi: 10.1016/s0092-8674(00)00138-0. [DOI] [PubMed] [Google Scholar]
  37. Springer T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994 Jan 28;76(2):301–314. doi: 10.1016/0092-8674(94)90337-9. [DOI] [PubMed] [Google Scholar]
  38. Usami S., Chen H. H., Zhao Y., Chien S., Skalak R. Design and construction of a linear shear stress flow chamber. Ann Biomed Eng. 1993;21(1):77–83. doi: 10.1007/BF02368167. [DOI] [PubMed] [Google Scholar]
  39. Wilkins P. P., McEver R. P., Cummings R. D. Structures of the O-glycans on P-selectin glycoprotein ligand-1 from HL-60 cells. J Biol Chem. 1996 Aug 2;271(31):18732–18742. doi: 10.1074/jbc.271.31.18732. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES