Abstract
P-selectin glycoprotein ligand-1 (PSGL-1) is a large (240 kDa) glycoprotein found on the surface of nearly all leukocytes. The mature molecule is decorated with multiple N- and O-linked glycans and displays copies of the tetrasaccharide sialyl-Lewis(x) (sLe(X)), as well as a cluster of three tyrosine sulfate (tyr-SO(3)) groups near the N-terminus of the processed protein. Previous studies have suggested that PSGL-1 needs to be tyrosine-sulfated, in addition to glycosylated with sLe(X), to successfully interact with P-selectin. To better understand how biochemical features of the PSGL-1 ligand are related to its adhesion phenotype, we have measured the dynamics of adhesion under flow of a series of well-defined PSGL-1 variants that differ in their biochemical modification, to both P- and E-selectin-coated substrates. These variants are distinct PSGL-1 peptides: one that possesses sLe(X) in conjunction with three N-terminal tyr-SO(3) groups (SGP3), one that possesses sLe(X) without tyrosine sulfation (GP1), and one that lacks sLe(X) but has three N-terminal tyr-SO(3) groups (SP3). Although all peptides expressing sLe(X), tyr-SO(3), or both supported some form of rolling adhesion on P-selectin, only peptides expressing sLe(X) groups showed rolling adhesion on E-selectin. On P-selectin, the PSGL-1 peptides demonstrated a decreasing strength of adhesion in the following order: SGP3 > GP1 > SP3. Robust, rolling adhesion on P-selectin was mediated by the GP1 peptide, despite its lack of tyrosine sulfation. However, the addition of tyrosine sulfation to glycosylated peptides (SGP3) creates a super ligand for P-selectin that supports slower rolling adhesion at all shear rates and supports rolling adhesion at much higher shear rates. Tyrosine sulfation has no similar effect on PSGL-1 rolling on E-selectin. Such functional distinctions in rolling dynamics are uniquely realized with a cell-free system, which permits precise, unambiguous identification of the functional activity of adhesive ligands. These findings are consistent with structural and functional characterizations of the interactions between these peptides and E- and P-selectin published recently.
Full Text
The Full Text of this article is available as a PDF (95.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alon R., Hammer D. A., Springer T. A. Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature. 1995 Apr 6;374(6522):539–542. doi: 10.1038/374539a0. [DOI] [PubMed] [Google Scholar]
- Aruffo A., Kolanus W., Walz G., Fredman P., Seed B. CD62/P-selectin recognition of myeloid and tumor cell sulfatides. Cell. 1991 Oct 4;67(1):35–44. doi: 10.1016/0092-8674(91)90570-o. [DOI] [PubMed] [Google Scholar]
- Berg E. L., Magnani J., Warnock R. A., Robinson M. K., Butcher E. C. Comparison of L-selectin and E-selectin ligand specificities: the L-selectin can bind the E-selectin ligands sialyl Le(x) and sialyl Le(a). Biochem Biophys Res Commun. 1992 Apr 30;184(2):1048–1055. doi: 10.1016/0006-291x(92)90697-j. [DOI] [PubMed] [Google Scholar]
- Berg E. L., Robinson M. K., Mansson O., Butcher E. C., Magnani J. L. A carbohydrate domain common to both sialyl Le(a) and sialyl Le(X) is recognized by the endothelial cell leukocyte adhesion molecule ELAM-1. J Biol Chem. 1991 Aug 15;266(23):14869–14872. [PubMed] [Google Scholar]
- Bevilacqua M. P. Endothelial-leukocyte adhesion molecules. Annu Rev Immunol. 1993;11:767–804. doi: 10.1146/annurev.iy.11.040193.004003. [DOI] [PubMed] [Google Scholar]
- Bevilacqua M. P., Nelson R. M. Selectins. J Clin Invest. 1993 Feb;91(2):379–387. doi: 10.1172/JCI116210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruehl R. E., Moore K. L., Lorant D. E., Borregaard N., Zimmerman G. A., McEver R. P., Bainton D. F. Leukocyte activation induces surface redistribution of P-selectin glycoprotein ligand-1. J Leukoc Biol. 1997 Apr;61(4):489–499. doi: 10.1002/jlb.61.4.489. [DOI] [PubMed] [Google Scholar]
- Brunk D. K., Hammer D. A. Quantifying rolling adhesion with a cell-free assay: E-selectin and its carbohydrate ligands. Biophys J. 1997 Jun;72(6):2820–2833. doi: 10.1016/S0006-3495(97)78924-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen S., Alon R., Fuhlbrigge R. C., Springer T. A. Rolling and transient tethering of leukocytes on antibodies reveal specializations of selectins. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3172–3177. doi: 10.1073/pnas.94.7.3172. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Epperson T. K., Patel K. D., McEver R. P., Cummings R. D. Noncovalent association of P-selectin glycoprotein ligand-1 and minimal determinants for binding to P-selectin. J Biol Chem. 2000 Mar 17;275(11):7839–7853. doi: 10.1074/jbc.275.11.7839. [DOI] [PubMed] [Google Scholar]
- Evans E., Leung A., Hammer D., Simon S. Chemically distinct transition states govern rapid dissociation of single L-selectin bonds under force. Proc Natl Acad Sci U S A. 2001 Mar 13;98(7):3784–3789. doi: 10.1073/pnas.061324998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Evans E., Ritchie K., Merkel R. Sensitive force technique to probe molecular adhesion and structural linkages at biological interfaces. Biophys J. 1995 Jun;68(6):2580–2587. doi: 10.1016/S0006-3495(95)80441-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Foxall C., Watson S. R., Dowbenko D., Fennie C., Lasky L. A., Kiso M., Hasegawa A., Asa D., Brandley B. K. The three members of the selectin receptor family recognize a common carbohydrate epitope, the sialyl Lewis(x) oligosaccharide. J Cell Biol. 1992 May;117(4):895–902. doi: 10.1083/jcb.117.4.895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goetz D. J., Greif D. M., Ding H., Camphausen R. T., Howes S., Comess K. M., Snapp K. R., Kansas G. S., Luscinskas F. W. Isolated P-selectin glycoprotein ligand-1 dynamic adhesion to P- and E-selectin. J Cell Biol. 1997 Apr 21;137(2):509–519. doi: 10.1083/jcb.137.2.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenberg A. W., Brunk D. K., Hammer D. A. Cell-free rolling mediated by L-selectin and sialyl Lewis(x) reveals the shear threshold effect. Biophys J. 2000 Nov;79(5):2391–2402. doi: 10.1016/S0006-3495(00)76484-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammer D. A., Apte S. M. Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectin-mediated neutrophil adhesion. Biophys J. 1992 Jul;63(1):35–57. doi: 10.1016/S0006-3495(92)81577-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Handa K., Nudelman E. D., Stroud M. R., Shiozawa T., Hakomori S. Selectin GMP-140 (CD62; PADGEM) binds to sialosyl-Le(a) and sialosyl-Le(x), and sulfated glycans modulate this binding. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1223–1230. doi: 10.1016/0006-291x(91)92069-v. [DOI] [PubMed] [Google Scholar]
- Jung U., Norman K. E., Scharffetter-Kochanek K., Beaudet A. L., Ley K. Transit time of leukocytes rolling through venules controls cytokine-induced inflammatory cell recruitment in vivo. J Clin Invest. 1998 Oct 15;102(8):1526–1533. doi: 10.1172/JCI119893. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kumar R., Camphausen R. T., Sullivan F. X., Cumming D. A. Core2 beta-1,6-N-acetylglucosaminyltransferase enzyme activity is critical for P-selectin glycoprotein ligand-1 binding to P-selectin. Blood. 1996 Nov 15;88(10):3872–3879. [PubMed] [Google Scholar]
- LaVallie E. R., Rehemtulla A., Racie L. A., DiBlasio E. A., Ferenz C., Grant K. L., Light A., McCoy J. M. Cloning and functional expression of a cDNA encoding the catalytic subunit of bovine enterokinase. J Biol Chem. 1993 Nov 5;268(31):23311–23317. [PubMed] [Google Scholar]
- Leppänen A., Mehta P., Ouyang Y. B., Ju T., Helin J., Moore K. L., van Die I., Canfield W. M., McEver R. P., Cummings R. D. A novel glycosulfopeptide binds to P-selectin and inhibits leukocyte adhesion to P-selectin. J Biol Chem. 1999 Aug 27;274(35):24838–24848. doi: 10.1074/jbc.274.35.24838. [DOI] [PubMed] [Google Scholar]
- Li F., Wilkins P. P., Crawley S., Weinstein J., Cummings R. D., McEver R. P. Post-translational modifications of recombinant P-selectin glycoprotein ligand-1 required for binding to P- and E-selectin. J Biol Chem. 1996 Feb 9;271(6):3255–3264. [PubMed] [Google Scholar]
- Liu W., Ramachandran V., Kang J., Kishimoto T. K., Cummings R. D., McEver R. P. Identification of N-terminal residues on P-selectin glycoprotein ligand-1 required for binding to P-selectin. J Biol Chem. 1998 Mar 20;273(12):7078–7087. doi: 10.1074/jbc.273.12.7078. [DOI] [PubMed] [Google Scholar]
- McEver R. P., Cummings R. D. Perspectives series: cell adhesion in vascular biology. Role of PSGL-1 binding to selectins in leukocyte recruitment. J Clin Invest. 1997 Aug 1;100(3):485–491. doi: 10.1172/JCI119556. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merkel R., Nassoy P., Leung A., Ritchie K., Evans E. Energy landscapes of receptor-ligand bonds explored with dynamic force spectroscopy. Nature. 1999 Jan 7;397(6714):50–53. doi: 10.1038/16219. [DOI] [PubMed] [Google Scholar]
- Moore K. L. Structure and function of P-selectin glycoprotein ligand-1. Leuk Lymphoma. 1998 Mar;29(1-2):1–15. doi: 10.3109/10428199809058377. [DOI] [PubMed] [Google Scholar]
- Nelson R. M., Dolich S., Aruffo A., Cecconi O., Bevilacqua M. P. Higher-affinity oligosaccharide ligands for E-selectin. J Clin Invest. 1993 Mar;91(3):1157–1166. doi: 10.1172/JCI116275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patel K. D., Moore K. L., Nollert M. U., McEver R. P. Neutrophils use both shared and distinct mechanisms to adhere to selectins under static and flow conditions. J Clin Invest. 1995 Oct;96(4):1887–1896. doi: 10.1172/JCI118234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Polley M. J., Phillips M. L., Wayner E., Nudelman E., Singhal A. K., Hakomori S., Paulson J. C. CD62 and endothelial cell-leukocyte adhesion molecule 1 (ELAM-1) recognize the same carbohydrate ligand, sialyl-Lewis x. Proc Natl Acad Sci U S A. 1991 Jul 15;88(14):6224–6228. doi: 10.1073/pnas.88.14.6224. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pouyani T., Seed B. PSGL-1 recognition of P-selectin is controlled by a tyrosine sulfation consensus at the PSGL-1 amino terminus. Cell. 1995 Oct 20;83(2):333–343. doi: 10.1016/0092-8674(95)90174-4. [DOI] [PubMed] [Google Scholar]
- Ramachandran V., Nollert M. U., Qiu H., Liu W. J., Cummings R. D., Zhu C., McEver R. P. Tyrosine replacement in P-selectin glycoprotein ligand-1 affects distinct kinetic and mechanical properties of bonds with P- and L-selectin. Proc Natl Acad Sci U S A. 1999 Nov 23;96(24):13771–13776. doi: 10.1073/pnas.96.24.13771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rodgers S. D., Camphausen R. T., Hammer D. A. Sialyl Lewis(x)-mediated, PSGL-1-independent rolling adhesion on P-selectin. Biophys J. 2000 Aug;79(2):694–706. doi: 10.1016/S0006-3495(00)76328-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosen S. D., Bertozzi C. R. Two selectins converge on sulphate. Leukocyte adhesion. Curr Biol. 1996 Mar 1;6(3):261–264. doi: 10.1016/s0960-9822(02)00473-6. [DOI] [PubMed] [Google Scholar]
- Sako D., Comess K. M., Barone K. M., Camphausen R. T., Cumming D. A., Shaw G. D. A sulfated peptide segment at the amino terminus of PSGL-1 is critical for P-selectin binding. Cell. 1995 Oct 20;83(2):323–331. doi: 10.1016/0092-8674(95)90173-6. [DOI] [PubMed] [Google Scholar]
- Smith M. J., Berg E. L., Lawrence M. B. A direct comparison of selectin-mediated transient, adhesive events using high temporal resolution. Biophys J. 1999 Dec;77(6):3371–3383. doi: 10.1016/S0006-3495(99)77169-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Somers W. S., Tang J., Shaw G. D., Camphausen R. T. Insights into the molecular basis of leukocyte tethering and rolling revealed by structures of P- and E-selectin bound to SLe(X) and PSGL-1. Cell. 2000 Oct 27;103(3):467–479. doi: 10.1016/s0092-8674(00)00138-0. [DOI] [PubMed] [Google Scholar]
- Springer T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994 Jan 28;76(2):301–314. doi: 10.1016/0092-8674(94)90337-9. [DOI] [PubMed] [Google Scholar]
- Usami S., Chen H. H., Zhao Y., Chien S., Skalak R. Design and construction of a linear shear stress flow chamber. Ann Biomed Eng. 1993;21(1):77–83. doi: 10.1007/BF02368167. [DOI] [PubMed] [Google Scholar]
- Wilkins P. P., McEver R. P., Cummings R. D. Structures of the O-glycans on P-selectin glycoprotein ligand-1 from HL-60 cells. J Biol Chem. 1996 Aug 2;271(31):18732–18742. doi: 10.1074/jbc.271.31.18732. [DOI] [PubMed] [Google Scholar]