Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Oct;81(4):2050–2058. doi: 10.1016/S0006-3495(01)75854-7

Divergent effects of the malignant hyperthermia-susceptible Arg(615)-->Cys mutation on the Ca(2+) and Mg(2+) dependence of the RyR1.

E M Balog 1, B R Fruen 1, N H Shomer 1, C F Louis 1
PMCID: PMC1301678  PMID: 11566777

Abstract

The sarcoplasmic reticulum (SR) Ca(2+) release channel (RyR1) from malignant hyperthermia-susceptible (MHS) porcine skeletal muscle has a decreased sensitivity to inhibition by Mg(2+). This diminished Mg(2+) inhibition has been attributed to a lower Mg(2+) affinity of the inhibition (I) site. To determine whether alterations in the Ca(2+) and Mg(2+) affinity of the activation (A) site contribute to the altered Mg(2+) inhibition, we estimated the Ca(2+) and Mg(2+) affinities of the A- and I-sites of normal and MHS RyR1. Compared with normal SR, MHS SR required less Ca(2+) to half-maximally activate [(3)H]ryanodine binding (K(A,Ca): MHS = 0.17 +/- 0.01 microM; normal = 0.29 +/- 0.02 microM) and more Ca(2+) to half-maximally inhibit ryanodine binding (K(I,Ca): MHS = 519.3 +/- 48.7 microM; normal = 293.3 +/- 24.2 microM). The apparent Mg(2+) affinity constants of the MHS RyR1 A- and I-sites were approximately twice those of the A- and I-sites of the normal RyR1 (K(A,Mg): MHS = 44.36 +/- 4.54 microM; normal = 21.59 +/- 1.66 microM; K(I,Mg): MHS = 660.8 +/- 53.0 microM; normal = 299.2 +/- 24.5 microM). Thus, the reduced Mg(2+) inhibition of the MHS RyR1 compared with the normal RyR1 is due to both an enhanced selectivity of the MHS RyR1 A-site for Ca(2+) over Mg(2+) and a reduced Mg(2+) affinity of the I-site.

Full Text

The Full Text of this article is available as a PDF (142.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brooks S. P., Storey K. B. Bound and determined: a computer program for making buffers of defined ion concentrations. Anal Biochem. 1992 Feb 14;201(1):119–126. doi: 10.1016/0003-2697(92)90183-8. [DOI] [PubMed] [Google Scholar]
  2. Chen S. R., Ebisawa K., Li X., Zhang L. Molecular identification of the ryanodine receptor Ca2+ sensor. J Biol Chem. 1998 Jun 12;273(24):14675–14678. doi: 10.1074/jbc.273.24.14675. [DOI] [PubMed] [Google Scholar]
  3. Dietze B., Henke J., Eichinger H. M., Lehmann-Horn F., Melzer W. Malignant hyperthermia mutation Arg615Cys in the porcine ryanodine receptor alters voltage dependence of Ca2+ release. J Physiol. 2000 Aug 1;526(Pt 3):507–514. doi: 10.1111/j.1469-7793.2000.t01-1-00507.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Du G. G., MacLennan D. H. Ca(2+) inactivation sites are located in the COOH-terminal quarter of recombinant rabbit skeletal muscle Ca(2+) release channels (ryanodine receptors). J Biol Chem. 1999 Sep 10;274(37):26120–26126. doi: 10.1074/jbc.274.37.26120. [DOI] [PubMed] [Google Scholar]
  5. Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
  6. Fruen B. R., Bardy J. M., Byrem T. M., Strasburg G. M., Louis C. F. Differential Ca(2+) sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Am J Physiol Cell Physiol. 2000 Sep;279(3):C724–C733. doi: 10.1152/ajpcell.2000.279.3.C724. [DOI] [PubMed] [Google Scholar]
  7. Fruen B. R., Kane P. K., Mickelson J. R., Louis C. F. Chloride-dependent sarcoplasmic reticulum Ca2+ release correlates with increased Ca2+ activation of ryanodine receptors. Biophys J. 1996 Nov;71(5):2522–2530. doi: 10.1016/S0006-3495(96)79445-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fujii J., Otsu K., Zorzato F., de Leon S., Khanna V. K., Weiler J. E., O'Brien P. J., MacLennan D. H. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science. 1991 Jul 26;253(5018):448–451. doi: 10.1126/science.1862346. [DOI] [PubMed] [Google Scholar]
  9. Gallant E. M., Gronert G. A., Taylor S. R. Cellular membrane potentials and contractile threshold in mammalian skeletal muscle susceptible to malignant hyperthermia. Neurosci Lett. 1982 Feb 12;28(2):181–186. doi: 10.1016/0304-3940(82)90149-5. [DOI] [PubMed] [Google Scholar]
  10. Herrmann-Frank A., Lüttgau H. C., Stephenson D. G. Caffeine and excitation-contraction coupling in skeletal muscle: a stimulating story. J Muscle Res Cell Motil. 1999 Feb;20(2):223–237. doi: 10.1023/a:1005496708505. [DOI] [PubMed] [Google Scholar]
  11. Herrmann-Frank A., Richter M., Lehmann-Horn F. 4-Chloro-m-cresol: a specific tool to distinguish between malignant hyperthermia-susceptible and normal muscle. Biochem Pharmacol. 1996 Jul 12;52(1):149–155. doi: 10.1016/0006-2952(96)00175-x. [DOI] [PubMed] [Google Scholar]
  12. Jurkat-Rott K., McCarthy T., Lehmann-Horn F. Genetics and pathogenesis of malignant hyperthermia. Muscle Nerve. 2000 Jan;23(1):4–17. doi: 10.1002/(sici)1097-4598(200001)23:1<4::aid-mus3>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  13. Konishi M. Cytoplasmic free concentrations of Ca2+ and Mg2+ in skeletal muscle fibers at rest and during contraction. Jpn J Physiol. 1998 Dec;48(6):421–438. doi: 10.2170/jjphysiol.48.421. [DOI] [PubMed] [Google Scholar]
  14. Laver D. R., Baynes T. M., Dulhunty A. F. Magnesium inhibition of ryanodine-receptor calcium channels: evidence for two independent mechanisms. J Membr Biol. 1997 Apr 1;156(3):213–229. doi: 10.1007/s002329900202. [DOI] [PubMed] [Google Scholar]
  15. Laver D. R., Owen V. J., Junankar P. R., Taske N. L., Dulhunty A. F., Lamb G. D. Reduced inhibitory effect of Mg2+ on ryanodine receptor-Ca2+ release channels in malignant hyperthermia. Biophys J. 1997 Oct;73(4):1913–1924. doi: 10.1016/S0006-3495(97)78222-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. López J. R., Contreras J., Linares N., Allen P. D. Hypersensitivity of malignant hyperthermia-susceptible swine skeletal muscle to caffeine is mediated by high resting myoplasmic [Ca2+ ]. Anesthesiology. 2000 Jun;92(6):1799–1806. doi: 10.1097/00000542-200006000-00040. [DOI] [PubMed] [Google Scholar]
  17. McCarthy T. V., Quane K. A., Lynch P. J. Ryanodine receptor mutations in malignant hyperthermia and central core disease. Hum Mutat. 2000;15(5):410–417. doi: 10.1002/(SICI)1098-1004(200005)15:5<410::AID-HUMU2>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  18. Meissner G., Rios E., Tripathy A., Pasek D. A. Regulation of skeletal muscle Ca2+ release channel (ryanodine receptor) by Ca2+ and monovalent cations and anions. J Biol Chem. 1997 Jan 17;272(3):1628–1638. doi: 10.1074/jbc.272.3.1628. [DOI] [PubMed] [Google Scholar]
  19. Meissner G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol. 1994;56:485–508. doi: 10.1146/annurev.ph.56.030194.002413. [DOI] [PubMed] [Google Scholar]
  20. Mickelson J. R., Gallant E. M., Litterer L. A., Johnson K. M., Rempel W. E., Louis C. F. Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia. J Biol Chem. 1988 Jul 5;263(19):9310–9315. [PubMed] [Google Scholar]
  21. Mickelson J. R., Litterer L. A., Jacobson B. A., Louis C. F. Stimulation and inhibition of [3H]ryanodine binding to sarcoplasmic reticulum from malignant hyperthermia susceptible pigs. Arch Biochem Biophys. 1990 Apr;278(1):251–257. doi: 10.1016/0003-9861(90)90255-w. [DOI] [PubMed] [Google Scholar]
  22. Murayama T., Kurebayashi N., Ogawa Y. Role of Mg(2+) in Ca(2+)-induced Ca(2+) release through ryanodine receptors of frog skeletal muscle: modulations by adenine nucleotides and caffeine. Biophys J. 2000 Apr;78(4):1810–1824. doi: 10.1016/S0006-3495(00)76731-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Owen V. J., Taske N. L., Lamb G. D. Reduced Mg2+ inhibition of Ca2+ release in muscle fibers of pigs susceptible to malignant hyperthermia. Am J Physiol. 1997 Jan;272(1 Pt 1):C203–C211. doi: 10.1152/ajpcell.1997.272.1.C203. [DOI] [PubMed] [Google Scholar]
  24. Richter M., Schleithoff L., Deufel T., Lehmann-Horn F., Herrmann-Frank A. Functional characterization of a distinct ryanodine receptor mutation in human malignant hyperthermia-susceptible muscle. J Biol Chem. 1997 Feb 21;272(8):5256–5260. doi: 10.1074/jbc.272.8.5256. [DOI] [PubMed] [Google Scholar]
  25. Shomer N. H., Louis C. F., Fill M., Litterer L. A., Mickelson J. R. Reconstitution of abnormalities in the malignant hyperthermia-susceptible pig ryanodine receptor. Am J Physiol. 1993 Jan;264(1 Pt 1):C125–C135. doi: 10.1152/ajpcell.1993.264.1.C125. [DOI] [PubMed] [Google Scholar]
  26. Shomer N. H., Mickelson J. R., Louis C. F. Ion selectivity of porcine skeletal muscle Ca2+ release channels is unaffected by the Arg615 to Cys615 mutation. Biophys J. 1994 Aug;67(2):641–646. doi: 10.1016/S0006-3495(94)80524-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Valdivia H. H., Hogan K., Coronado R. Altered binding site for Ca2+ in the ryanodine receptor of human malignant hyperthermia. Am J Physiol. 1991 Aug;261(2 Pt 1):C237–C245. doi: 10.1152/ajpcell.1991.261.2.C237. [DOI] [PubMed] [Google Scholar]
  28. Zucchi R., Ronca-Testoni S. The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol Rev. 1997 Mar;49(1):1–51. [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES