Abstract
The sarcoplasmic reticulum (SR) Ca(2+) release channel (RyR1) from malignant hyperthermia-susceptible (MHS) porcine skeletal muscle has a decreased sensitivity to inhibition by Mg(2+). This diminished Mg(2+) inhibition has been attributed to a lower Mg(2+) affinity of the inhibition (I) site. To determine whether alterations in the Ca(2+) and Mg(2+) affinity of the activation (A) site contribute to the altered Mg(2+) inhibition, we estimated the Ca(2+) and Mg(2+) affinities of the A- and I-sites of normal and MHS RyR1. Compared with normal SR, MHS SR required less Ca(2+) to half-maximally activate [(3)H]ryanodine binding (K(A,Ca): MHS = 0.17 +/- 0.01 microM; normal = 0.29 +/- 0.02 microM) and more Ca(2+) to half-maximally inhibit ryanodine binding (K(I,Ca): MHS = 519.3 +/- 48.7 microM; normal = 293.3 +/- 24.2 microM). The apparent Mg(2+) affinity constants of the MHS RyR1 A- and I-sites were approximately twice those of the A- and I-sites of the normal RyR1 (K(A,Mg): MHS = 44.36 +/- 4.54 microM; normal = 21.59 +/- 1.66 microM; K(I,Mg): MHS = 660.8 +/- 53.0 microM; normal = 299.2 +/- 24.5 microM). Thus, the reduced Mg(2+) inhibition of the MHS RyR1 compared with the normal RyR1 is due to both an enhanced selectivity of the MHS RyR1 A-site for Ca(2+) over Mg(2+) and a reduced Mg(2+) affinity of the I-site.
Full Text
The Full Text of this article is available as a PDF (142.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brooks S. P., Storey K. B. Bound and determined: a computer program for making buffers of defined ion concentrations. Anal Biochem. 1992 Feb 14;201(1):119–126. doi: 10.1016/0003-2697(92)90183-8. [DOI] [PubMed] [Google Scholar]
- Chen S. R., Ebisawa K., Li X., Zhang L. Molecular identification of the ryanodine receptor Ca2+ sensor. J Biol Chem. 1998 Jun 12;273(24):14675–14678. doi: 10.1074/jbc.273.24.14675. [DOI] [PubMed] [Google Scholar]
- Dietze B., Henke J., Eichinger H. M., Lehmann-Horn F., Melzer W. Malignant hyperthermia mutation Arg615Cys in the porcine ryanodine receptor alters voltage dependence of Ca2+ release. J Physiol. 2000 Aug 1;526(Pt 3):507–514. doi: 10.1111/j.1469-7793.2000.t01-1-00507.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Du G. G., MacLennan D. H. Ca(2+) inactivation sites are located in the COOH-terminal quarter of recombinant rabbit skeletal muscle Ca(2+) release channels (ryanodine receptors). J Biol Chem. 1999 Sep 10;274(37):26120–26126. doi: 10.1074/jbc.274.37.26120. [DOI] [PubMed] [Google Scholar]
- Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
- Fruen B. R., Bardy J. M., Byrem T. M., Strasburg G. M., Louis C. F. Differential Ca(2+) sensitivity of skeletal and cardiac muscle ryanodine receptors in the presence of calmodulin. Am J Physiol Cell Physiol. 2000 Sep;279(3):C724–C733. doi: 10.1152/ajpcell.2000.279.3.C724. [DOI] [PubMed] [Google Scholar]
- Fruen B. R., Kane P. K., Mickelson J. R., Louis C. F. Chloride-dependent sarcoplasmic reticulum Ca2+ release correlates with increased Ca2+ activation of ryanodine receptors. Biophys J. 1996 Nov;71(5):2522–2530. doi: 10.1016/S0006-3495(96)79445-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujii J., Otsu K., Zorzato F., de Leon S., Khanna V. K., Weiler J. E., O'Brien P. J., MacLennan D. H. Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia. Science. 1991 Jul 26;253(5018):448–451. doi: 10.1126/science.1862346. [DOI] [PubMed] [Google Scholar]
- Gallant E. M., Gronert G. A., Taylor S. R. Cellular membrane potentials and contractile threshold in mammalian skeletal muscle susceptible to malignant hyperthermia. Neurosci Lett. 1982 Feb 12;28(2):181–186. doi: 10.1016/0304-3940(82)90149-5. [DOI] [PubMed] [Google Scholar]
- Herrmann-Frank A., Lüttgau H. C., Stephenson D. G. Caffeine and excitation-contraction coupling in skeletal muscle: a stimulating story. J Muscle Res Cell Motil. 1999 Feb;20(2):223–237. doi: 10.1023/a:1005496708505. [DOI] [PubMed] [Google Scholar]
- Herrmann-Frank A., Richter M., Lehmann-Horn F. 4-Chloro-m-cresol: a specific tool to distinguish between malignant hyperthermia-susceptible and normal muscle. Biochem Pharmacol. 1996 Jul 12;52(1):149–155. doi: 10.1016/0006-2952(96)00175-x. [DOI] [PubMed] [Google Scholar]
- Jurkat-Rott K., McCarthy T., Lehmann-Horn F. Genetics and pathogenesis of malignant hyperthermia. Muscle Nerve. 2000 Jan;23(1):4–17. doi: 10.1002/(sici)1097-4598(200001)23:1<4::aid-mus3>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
- Konishi M. Cytoplasmic free concentrations of Ca2+ and Mg2+ in skeletal muscle fibers at rest and during contraction. Jpn J Physiol. 1998 Dec;48(6):421–438. doi: 10.2170/jjphysiol.48.421. [DOI] [PubMed] [Google Scholar]
- Laver D. R., Baynes T. M., Dulhunty A. F. Magnesium inhibition of ryanodine-receptor calcium channels: evidence for two independent mechanisms. J Membr Biol. 1997 Apr 1;156(3):213–229. doi: 10.1007/s002329900202. [DOI] [PubMed] [Google Scholar]
- Laver D. R., Owen V. J., Junankar P. R., Taske N. L., Dulhunty A. F., Lamb G. D. Reduced inhibitory effect of Mg2+ on ryanodine receptor-Ca2+ release channels in malignant hyperthermia. Biophys J. 1997 Oct;73(4):1913–1924. doi: 10.1016/S0006-3495(97)78222-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- López J. R., Contreras J., Linares N., Allen P. D. Hypersensitivity of malignant hyperthermia-susceptible swine skeletal muscle to caffeine is mediated by high resting myoplasmic [Ca2+ ]. Anesthesiology. 2000 Jun;92(6):1799–1806. doi: 10.1097/00000542-200006000-00040. [DOI] [PubMed] [Google Scholar]
- McCarthy T. V., Quane K. A., Lynch P. J. Ryanodine receptor mutations in malignant hyperthermia and central core disease. Hum Mutat. 2000;15(5):410–417. doi: 10.1002/(SICI)1098-1004(200005)15:5<410::AID-HUMU2>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
- Meissner G., Rios E., Tripathy A., Pasek D. A. Regulation of skeletal muscle Ca2+ release channel (ryanodine receptor) by Ca2+ and monovalent cations and anions. J Biol Chem. 1997 Jan 17;272(3):1628–1638. doi: 10.1074/jbc.272.3.1628. [DOI] [PubMed] [Google Scholar]
- Meissner G. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu Rev Physiol. 1994;56:485–508. doi: 10.1146/annurev.ph.56.030194.002413. [DOI] [PubMed] [Google Scholar]
- Mickelson J. R., Gallant E. M., Litterer L. A., Johnson K. M., Rempel W. E., Louis C. F. Abnormal sarcoplasmic reticulum ryanodine receptor in malignant hyperthermia. J Biol Chem. 1988 Jul 5;263(19):9310–9315. [PubMed] [Google Scholar]
- Mickelson J. R., Litterer L. A., Jacobson B. A., Louis C. F. Stimulation and inhibition of [3H]ryanodine binding to sarcoplasmic reticulum from malignant hyperthermia susceptible pigs. Arch Biochem Biophys. 1990 Apr;278(1):251–257. doi: 10.1016/0003-9861(90)90255-w. [DOI] [PubMed] [Google Scholar]
- Murayama T., Kurebayashi N., Ogawa Y. Role of Mg(2+) in Ca(2+)-induced Ca(2+) release through ryanodine receptors of frog skeletal muscle: modulations by adenine nucleotides and caffeine. Biophys J. 2000 Apr;78(4):1810–1824. doi: 10.1016/S0006-3495(00)76731-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owen V. J., Taske N. L., Lamb G. D. Reduced Mg2+ inhibition of Ca2+ release in muscle fibers of pigs susceptible to malignant hyperthermia. Am J Physiol. 1997 Jan;272(1 Pt 1):C203–C211. doi: 10.1152/ajpcell.1997.272.1.C203. [DOI] [PubMed] [Google Scholar]
- Richter M., Schleithoff L., Deufel T., Lehmann-Horn F., Herrmann-Frank A. Functional characterization of a distinct ryanodine receptor mutation in human malignant hyperthermia-susceptible muscle. J Biol Chem. 1997 Feb 21;272(8):5256–5260. doi: 10.1074/jbc.272.8.5256. [DOI] [PubMed] [Google Scholar]
- Shomer N. H., Louis C. F., Fill M., Litterer L. A., Mickelson J. R. Reconstitution of abnormalities in the malignant hyperthermia-susceptible pig ryanodine receptor. Am J Physiol. 1993 Jan;264(1 Pt 1):C125–C135. doi: 10.1152/ajpcell.1993.264.1.C125. [DOI] [PubMed] [Google Scholar]
- Shomer N. H., Mickelson J. R., Louis C. F. Ion selectivity of porcine skeletal muscle Ca2+ release channels is unaffected by the Arg615 to Cys615 mutation. Biophys J. 1994 Aug;67(2):641–646. doi: 10.1016/S0006-3495(94)80524-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valdivia H. H., Hogan K., Coronado R. Altered binding site for Ca2+ in the ryanodine receptor of human malignant hyperthermia. Am J Physiol. 1991 Aug;261(2 Pt 1):C237–C245. doi: 10.1152/ajpcell.1991.261.2.C237. [DOI] [PubMed] [Google Scholar]
- Zucchi R., Ronca-Testoni S. The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol Rev. 1997 Mar;49(1):1–51. [PubMed] [Google Scholar]