Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Oct;81(4):2069–2081. doi: 10.1016/S0006-3495(01)75856-0

Rate limitation of the Na(+),K(+)-ATPase pump cycle.

C Lüpfert 1, E Grell 1, V Pintschovius 1, H J Apell 1, F Cornelius 1, R J Clarke 1
PMCID: PMC1301680  PMID: 11566779

Abstract

The kinetics of Na(+)-dependent phosphorylation of the Na(+),K(+)-ATPase by ATP were investigated via the stopped-flow technique using the fluorescent label RH421 (saturating [ATP], [Na(+)], and [Mg(2+)], pH 7.4, and 24 degrees C). The well-established effect of buffer composition on the E(2)-E(1) equilibrium was used as a tool to investigate the effect of the initial enzyme conformation on the rate of phosphorylation of the enzyme. Preincubation of pig kidney enzyme in 25 mM histidine and 0.1 mM EDTA solution (conditions favoring E(2)) yielded a 1/tau value of 59 s(-1). Addition of MgCl(2) (5 mM), NaCl (2 mM), or ATP (2 mM) to the preincubation solution resulted in increases in 1/tau to values of 129, 167, and 143 s(-1), respectively. The increases can be attributed to a shift in the enzyme conformational equilibrium before phosphorylation from the E(2) state to an E(1) or E(1)-like state. The results thus demonstrate conclusively that the E(2) --> E(1) transition does in fact limit the rate of subsequent reactions of the pump cycle. Based on the experimental results, the rate constant of the E(2) --> E(1) transition under physiological conditions could be estimated to be approximately 65 s(-1) for pig kidney enzyme and 90 s(-1) for enzyme from rabbit kidney. Taking into account the rates of other partial reactions, computer simulations show these values to be consistent with the turnover number of the enzyme cycle (approximately 48 s(-1) and approximately 43 s(-1) for pig and rabbit, respectively) calculated from steady-state measurements. For enzyme of the alpha(1) isoform the E(2) --> E(1) conformational change is thus shown to be the major rate-determining step of the entire enzyme cycle.

Full Text

The Full Text of this article is available as a PDF (129.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apell H. J., Borlinghaus R., Läuger P. Fast charge translocations associated with partial reactions of the Na,K-pump: II. Microscopic analysis of transient currents. J Membr Biol. 1987;97(3):179–191. doi: 10.1007/BF01869221. [DOI] [PubMed] [Google Scholar]
  2. Apell H. J. Kinetic and energetic aspects of Na+/K(+)-transport cycle steps. Ann N Y Acad Sci. 1997 Nov 3;834:221–230. doi: 10.1111/j.1749-6632.1997.tb52253.x. [DOI] [PubMed] [Google Scholar]
  3. Apell H. J., Schneeberger A., Sokolov V. S. Partial reactions of the Na,K-ATPase: kinetic analysis and transport properties. Acta Physiol Scand Suppl. 1998 Aug;643:235–245. [PubMed] [Google Scholar]
  4. Borlinghaus R., Apell H. J. Current transients generated by the Na+/K+-ATPase after an ATP concentration jump: dependence on sodium and ATP concentration. Biochim Biophys Acta. 1988 Apr 7;939(2):197–206. doi: 10.1016/0005-2736(88)90063-6. [DOI] [PubMed] [Google Scholar]
  5. Clarke R. J., Kane D. J., Apell H. J., Roudna M., Bamberg E. Kinetics of Na(+)-dependent conformational changes of rabbit kidney Na+,K(+)-ATPase. Biophys J. 1998 Sep;75(3):1340–1353. doi: 10.1016/S0006-3495(98)74052-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cornelius F. Phosphorylation/dephosphorylation of reconstituted shark Na+,K(+)-ATPase: one phosphorylation site per alpha beta protomer. Biochim Biophys Acta. 1995 May 4;1235(2):197–204. doi: 10.1016/0005-2736(95)80005-z. [DOI] [PubMed] [Google Scholar]
  7. Cornelius F. Rate determination in phosphorylation of shark rectal Na,K-ATPase by ATP: temperature sensitivity and effects of ADP. Biophys J. 1999 Aug;77(2):934–942. doi: 10.1016/S0006-3495(99)76944-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Esmann M. Determination of rate constants for nucleotide dissociation from Na,K-ATPase. Biochim Biophys Acta. 1992 Sep 21;1110(1):20–28. doi: 10.1016/0005-2736(92)90289-x. [DOI] [PubMed] [Google Scholar]
  9. Esmann M., Fedosova N. U. Eosin as a probe for conformational transitions and nucleotide binding in Na,K-ATPase. Ann N Y Acad Sci. 1997 Nov 3;834:310–321. doi: 10.1111/j.1749-6632.1997.tb52261.x. [DOI] [PubMed] [Google Scholar]
  10. Esmann M. Influence of Na+ on conformational states in membrane-bound renal Na,K-ATPase. Biochemistry. 1994 Jul 19;33(28):8558–8565. doi: 10.1021/bi00194a022. [DOI] [PubMed] [Google Scholar]
  11. Fendler K., Grell E., Haubs M., Bamberg E. Pump currents generated by the purified Na+K+-ATPase from kidney on black lipid membranes. EMBO J. 1985 Dec 1;4(12):3079–3085. doi: 10.1002/j.1460-2075.1985.tb04048.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fendler K., Jaruschewski S., Hobbs A., Albers W., Froehlich J. P. Pre-steady-state charge translocation in NaK-ATPase from eel electric organ. J Gen Physiol. 1993 Oct;102(4):631–666. doi: 10.1085/jgp.102.4.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Frank J., Zouni A., van Hoek A., Visser A. J., Clarke R. J. Interaction of the fluorescent probe RH421 with ribulose-1,5-bisphosphate carboxylase/oxygenase and with Na+,K(+)-ATPase membrane fragments. Biochim Biophys Acta. 1996 Apr 3;1280(1):51–64. doi: 10.1016/0005-2736(95)00277-4. [DOI] [PubMed] [Google Scholar]
  14. Friedrich T., Bamberg E., Nagel G. Na+,K(+)-ATPase pump currents in giant excised patches activated by an ATP concentration jump. Biophys J. 1996 Nov;71(5):2486–2500. doi: 10.1016/S0006-3495(96)79442-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Friedrich T., Nagel G. Comparison of Na+/K(+)-ATPase pump currents activated by ATP concentration or voltage jumps. Biophys J. 1997 Jul;73(1):186–194. doi: 10.1016/S0006-3495(97)78059-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ganea C., Babes A., Lüpfert C., Grell E., Fendler K., Clarke R. J. Hofmeister effects of anions on the kinetics of partial reactions of the Na+,K+-ATPase. Biophys J. 1999 Jul;77(1):267–281. doi: 10.1016/S0006-3495(99)76888-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Geibel S., Barth A., Amslinger S., Jung A. H., Burzik C., Clarke R. J., Givens R. S., Fendler K. P(3)-[2-(4-hydroxyphenyl)-2-oxo]ethyl ATP for the rapid activation of the Na(+),K(+)-ATPase. Biophys J. 2000 Sep;79(3):1346–1357. doi: 10.1016/S0006-3495(00)76387-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ghosh M. C., Jencks W. P. Phosphorylation of the sodium-potassium adenosinetriphosphatase with adenosine triphosphate and sodium ion that requires subconformations in addition to principal E1 and E2 conformations of the enzyme. Biochemistry. 1996 Sep 24;35(38):12587–12590. doi: 10.1021/bi961324w. [DOI] [PubMed] [Google Scholar]
  19. Hansen O. Heterogeneity of Na+/K+-ATPase from rectal gland of Squalus acanthias is not due to alpha isoform diversity. Pflugers Arch. 1999 Mar;437(4):517–522. doi: 10.1007/pl00008089. [DOI] [PubMed] [Google Scholar]
  20. Heyse S., Wuddel I., Apell H. J., Stürmer W. Partial reactions of the Na,K-ATPase: determination of rate constants. J Gen Physiol. 1994 Aug;104(2):197–240. doi: 10.1085/jgp.104.2.197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hobbs A. S., Albers R. W., Froehlich J. P. Potassium-induced changes in phosphorylation and dephosphorylation of (Na+ + K+)-ATPase observed in the transient state. J Biol Chem. 1980 Apr 25;255(8):3395–3402. [PubMed] [Google Scholar]
  22. Jorgensen P. L. Isolation of (Na+ plus K+)-ATPase. Methods Enzymol. 1974;32:277–290. [PubMed] [Google Scholar]
  23. Jorgensen P. L. Purification and characterization of (Na+ plus K+ )-ATPase. 3. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by sodium dodecylsulphate. Biochim Biophys Acta. 1974 Jul 12;356(1):36–52. doi: 10.1016/0005-2736(74)90292-2. [DOI] [PubMed] [Google Scholar]
  24. Jorgensen P. L. Purification and characterization of (Na+, K+)-ATPase. V. Conformational changes in the enzyme Transitions between the Na-form and the K-form studied with tryptic digestion as a tool. Biochim Biophys Acta. 1975 Sep 2;401(3):399–415. doi: 10.1016/0005-2736(75)90239-4. [DOI] [PubMed] [Google Scholar]
  25. Jørgensen P. L., Andersen J. P. Structural basis for E1-E2 conformational transitions in Na,K-pump and Ca-pump proteins. J Membr Biol. 1988 Jul;103(2):95–120. doi: 10.1007/BF01870942. [DOI] [PubMed] [Google Scholar]
  26. Kane D. J., Fendler K., Grell E., Bamberg E., Taniguchi K., Froehlich J. P., Clarke R. J. Stopped-flow kinetic investigations of conformational changes of pig kidney Na+,K+-ATPase. Biochemistry. 1997 Oct 28;36(43):13406–13420. doi: 10.1021/bi970598w. [DOI] [PubMed] [Google Scholar]
  27. Kane D. J., Grell E., Bamberg E., Clarke R. J. Dephosphorylation kinetics of pig kidney Na+,K+-ATPase. Biochemistry. 1998 Mar 31;37(13):4581–4591. doi: 10.1021/bi972813e. [DOI] [PubMed] [Google Scholar]
  28. Karlish S. J. Characterization of conformational changes in (Na,K) ATPase labeled with fluorescein at the active site. J Bioenerg Biomembr. 1980 Aug;12(3-4):111–136. doi: 10.1007/BF00744678. [DOI] [PubMed] [Google Scholar]
  29. Karlish S. J., Yates D. W. Tryptophan fluorescence of (Na+ + K+)-ATPase as a tool for study of the enzyme mechanism. Biochim Biophys Acta. 1978 Nov 10;527(1):115–130. doi: 10.1016/0005-2744(78)90261-9. [DOI] [PubMed] [Google Scholar]
  30. Keillor J. W., Jencks W. P. Phosphorylation of the sodium--potassium adenosinetriphosphatase proceeds through a rate-limiting conformational change followed by rapid phosphoryl transfer. Biochemistry. 1996 Feb 27;35(8):2750–2753. doi: 10.1021/bi951370g. [DOI] [PubMed] [Google Scholar]
  31. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  32. Mahmmoud Y. A., Vorum H., Cornelius F. Identification of a phospholemman-like protein from shark rectal glands. Evidence for indirect regulation of Na,K-ATPase by protein kinase c via a novel member of the FXYDY family. J Biol Chem. 2000 Nov 17;275(46):35969–35977. doi: 10.1074/jbc.M005168200. [DOI] [PubMed] [Google Scholar]
  33. Maixent J. M., Berrebi-Bertrand I. Turnover rates of the canine cardiac Na,K-ATPases. FEBS Lett. 1993 Sep 20;330(3):297–301. doi: 10.1016/0014-5793(93)80892-x. [DOI] [PubMed] [Google Scholar]
  34. Martin D. W., Sachs J. R. Ligands presumed to label high affinity and low affinity ATP binding sites do not interact in an (alpha beta)2 diprotomer in duck nasal gland Na+,K+-ATPase, nor Do the sites coexist in native enzyme. J Biol Chem. 2000 Aug 11;275(32):24512–24517. doi: 10.1074/jbc.M003179200. [DOI] [PubMed] [Google Scholar]
  35. Martin D. W., Sachs J. R. Preparation of Na+,K+-ATPase with near maximal specific activity and phosphorylation capacity: evidence that the reaction mechanism involves all of the sites. Biochemistry. 1999 Jun 8;38(23):7485–7497. doi: 10.1021/bi983019b. [DOI] [PubMed] [Google Scholar]
  36. Märdh S., Post R. L. Phosphorylation from adenosine triphosphate of sodium- and potassium-activated adenosine triphosphatase. Comparison of enzyme-ligand complexes as precursors to the phosphoenzyme. J Biol Chem. 1977 Jan 25;252(2):633–638. [PubMed] [Google Scholar]
  37. Norby J. G., Jensen J. Binding of ATP to brain microsomal ATPase. Determination of the ATP-binding capacity and the dissociation constant of the enzyme-ATP complex as a function of K+ concentration. Biochim Biophys Acta. 1971 Mar 9;233(1):104–116. doi: 10.1016/0005-2736(71)90362-2. [DOI] [PubMed] [Google Scholar]
  38. Ottolenghi P. The reversible delipidation of a solubilized sodium-plus-potassium ion-dependent adenosine triphosphatase from the salt gland of the spiny dogfish. Biochem J. 1975 Oct;151(1):61–66. doi: 10.1042/bj1510061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  40. Pratap P. R., Palit A., Grassi-Nemeth E., Robinson J. D. Kinetics of conformational changes associated with potassium binding to and release from Na+/K(+)-ATPase. Biochim Biophys Acta. 1996 Dec 4;1285(2):203–211. doi: 10.1016/s0005-2736(96)00162-9. [DOI] [PubMed] [Google Scholar]
  41. Pratap P. R., Robinson J. D. Rapid kinetic analyses of the Na+/K(+)-ATPase distinguish among different criteria for conformational change. Biochim Biophys Acta. 1993 Sep 5;1151(1):89–98. doi: 10.1016/0005-2736(93)90075-b. [DOI] [PubMed] [Google Scholar]
  42. Scheiner-Bobis G., Antonipillai J., Farley R. A. Simultaneous binding of phosphate and TNP-ADP to FITC-modified NA+,K(+)-ATPase. Biochemistry. 1993 Sep 21;32(37):9592–9599. doi: 10.1021/bi00088a011. [DOI] [PubMed] [Google Scholar]
  43. Schuurmans Stekhoven F. M., Swarts H. G., de Pont J. J., Bonting S. L. Na+-like effect of imidazole on the phosphorylation of (Na+ + K+)-ATPase. Biochim Biophys Acta. 1985 Apr 26;815(1):16–24. doi: 10.1016/0005-2736(85)90468-7. [DOI] [PubMed] [Google Scholar]
  44. Skou J. C., Esmann M. Eosin, a fluorescent probe of ATP binding to the (Na+ + K+)-ATPase. Biochim Biophys Acta. 1981 Oct 2;647(2):232–240. doi: 10.1016/0005-2736(81)90251-0. [DOI] [PubMed] [Google Scholar]
  45. Skou J. C., Esmann M. Preparation of membrane Na+,K+-ATPase from rectal glands of Squalus acanthias. Methods Enzymol. 1988;156:43–46. doi: 10.1016/0076-6879(88)56006-8. [DOI] [PubMed] [Google Scholar]
  46. Skou J. C., Esmann M. The effects of Na+ and K+ on the conformational transitions of (Na+ + K+)-ATPase. Biochim Biophys Acta. 1983 Jul 28;746(1-2):101–113. doi: 10.1016/0167-4838(83)90016-x. [DOI] [PubMed] [Google Scholar]
  47. Smirnova I. N., Faller L. D. Mechanism of the conformational change in sodium pump reported by eosin. Biochemistry. 1995 Oct 10;34(40):13159–13169. doi: 10.1021/bi00040a030. [DOI] [PubMed] [Google Scholar]
  48. Smirnova I. N., Faller L. D. Role of Mg2+ ions in the conformational change reported by fluorescein 5'-isothiocyanate modification of Na+,K(+)-ATPase. Biochemistry. 1993 Jun 15;32(23):5967–5977. doi: 10.1021/bi00074a007. [DOI] [PubMed] [Google Scholar]
  49. Smirnova I. N., Lin S. H., Faller L. D. An equivalent site mechanism for Na+ and K+ binding to sodium pump and control of the conformational change reported by fluorescein 5'-isothiocyanate modification. Biochemistry. 1995 Jul 11;34(27):8657–8667. doi: 10.1021/bi00027a015. [DOI] [PubMed] [Google Scholar]
  50. Sokolov V. S., Apell H. J., Corrie J. E., Trentham D. R. Fast transient currents in Na,K-ATPase induced by ATP concentration jumps from the P3-[1-(3',5'-dimethoxyphenyl)-2-phenyl-2-oxo]ethyl ester of ATP. Biophys J. 1998 May;74(5):2285–2298. doi: 10.1016/S0006-3495(98)77938-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Steinberg M., Karlish S. J. Studies on conformational changes in Na,K-ATPase labeled with 5-iodoacetamidofluorescein. J Biol Chem. 1989 Feb 15;264(5):2726–2734. [PubMed] [Google Scholar]
  52. Stürmer W., Apell H. J., Wuddel I., Läuger P. Conformational transitions and change translocation by the Na,K pump: comparison of optical and electrical transients elicited by ATP-concentration jumps. J Membr Biol. 1989 Aug;110(1):67–86. doi: 10.1007/BF01870994. [DOI] [PubMed] [Google Scholar]
  53. Stürmer W., Bühler R., Apell H. J., Läuger P. Charge translocation by the Na,K-pump: II. Ion binding and release at the extracellular face. J Membr Biol. 1991 Apr;121(2):163–176. doi: 10.1007/BF01870530. [DOI] [PubMed] [Google Scholar]
  54. Ward D. G., Cavieres J. D. Binding of 2'(3')-O-(2,4-6-trinitrophenyl) ADP to soluble alpha beta protomers of Na, K-ATPase modified with fluorescein isothiocyanate. Evidence for two distinct nucleotide sites. J Biol Chem. 1996 May 24;271(21):12317–12321. doi: 10.1074/jbc.271.21.12317. [DOI] [PubMed] [Google Scholar]
  55. Wuddel I., Apell H. J. Electrogenicity of the sodium transport pathway in the Na,K-ATPase probed by charge-pulse experiments. Biophys J. 1995 Sep;69(3):909–921. doi: 10.1016/S0006-3495(95)79965-9. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES