Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Oct;81(4):2082–2099. doi: 10.1016/S0006-3495(01)75857-2

Two-dimensional kinetic analysis suggests nonsequential gating of mechanosensitive channels in Xenopus oocytes.

Z Gil 1, K L Magleby 1, S D Silberberg 1
PMCID: PMC1301681  PMID: 11566780

Abstract

Xenopus oocytes express mechanosensitive (MS(XO)) channels that can be studied in excised patches of membrane with the patch-clamp technique. This study examines the steady-state kinetic gating properties of MS(XO) channels using detailed single-channel analysis. The open and closed one-dimensional dwell-time distributions were described by the sums of 2-3 open and 5-7 closed exponential components, respectively, indicating that the channels enter at least 2-3 open and 5-7 closed kinetic states during gating. Dependency plots revealed that the durations of adjacent open and closed intervals were correlated, indicating two or more gateway states in the gating mechanism for MS channels. Maximum likelihood fitting of two-dimensional dwell-time distributions to both generic and specific models was used to examine gating mechanism and rank models. A kinetic scheme with five closed and five open states, in which each closed state could make a direct transition to an open state (two-tiered model) could account for the major features of the single-channel data. Two-tiered models that allowed direct transitions to subconductance open states in addition to the fully open state were also consistent with multiple gateway states. Thus, the gating mechanism of MS(XO) channels differs from the sequential (linear) gating mechanisms considered for MS channels in bacteria, chick skeletal muscle, and Necturus proximal tubule.

Full Text

The Full Text of this article is available as a PDF (409.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blatz A. L., Magleby K. L. Correcting single channel data for missed events. Biophys J. 1986 May;49(5):967–980. doi: 10.1016/S0006-3495(86)83725-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blatz A. L., Magleby K. L. Quantitative description of three modes of activity of fast chloride channels from rat skeletal muscle. J Physiol. 1986 Sep;378:141–174. doi: 10.1113/jphysiol.1986.sp016212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang G., Spencer R. H., Lee A. T., Barclay M. T., Rees D. C. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science. 1998 Dec 18;282(5397):2220–2226. doi: 10.1126/science.282.5397.2220. [DOI] [PubMed] [Google Scholar]
  4. Colquhoun D., Hawkes A. G. A note on correlations in single ion channel records. Proc R Soc Lond B Biol Sci. 1987 Feb 23;230(1258):15–52. doi: 10.1098/rspb.1987.0008. [DOI] [PubMed] [Google Scholar]
  5. Colquhoun D., Hawkes A. G. On the stochastic properties of bursts of single ion channel openings and of clusters of bursts. Philos Trans R Soc Lond B Biol Sci. 1982 Dec 24;300(1098):1–59. doi: 10.1098/rstb.1982.0156. [DOI] [PubMed] [Google Scholar]
  6. Colquhoun D., Hawkes A. G. On the stochastic properties of single ion channels. Proc R Soc Lond B Biol Sci. 1981 Mar 6;211(1183):205–235. doi: 10.1098/rspb.1981.0003. [DOI] [PubMed] [Google Scholar]
  7. Crouzy S. C., Sigworth F. J. Yet another approach to the dwell-time omission problem of single-channel analysis. Biophys J. 1990 Sep;58(3):731–743. doi: 10.1016/S0006-3495(90)82416-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Delcour A. H., Lipscombe D., Tsien R. W. Multiple modes of N-type calcium channel activity distinguished by differences in gating kinetics. J Neurosci. 1993 Jan;13(1):181–194. doi: 10.1523/JNEUROSCI.13-01-00181.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. García-Añoveros J., García J. A., Liu J. D., Corey D. P. The nematode degenerin UNC-105 forms ion channels that are activated by degeneration- or hypercontraction-causing mutations. Neuron. 1998 Jun;20(6):1231–1241. doi: 10.1016/s0896-6273(00)80503-6. [DOI] [PubMed] [Google Scholar]
  10. Gil Z., Magleby K. L., Silberberg S. D. Membrane-pipette interactions underlie delayed voltage activation of mechanosensitive channels in Xenopus oocytes. Biophys J. 1999 Jun;76(6):3118–3127. doi: 10.1016/S0006-3495(99)77463-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gil Z., Silberberg S. D., Magleby K. L. Voltage-induced membrane displacement in patch pipettes activates mechanosensitive channels. Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14594–14599. doi: 10.1073/pnas.96.25.14594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Guharay F., Sachs F. Mechanotransducer ion channels in chick skeletal muscle: the effects of extracellular pH. J Physiol. 1985 Jun;363:119–134. doi: 10.1113/jphysiol.1985.sp015699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Guharay F., Sachs F. Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol. 1984 Jul;352:685–701. doi: 10.1113/jphysiol.1984.sp015317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gustin M. C., Zhou X. L., Martinac B., Kung C. A mechanosensitive ion channel in the yeast plasma membrane. Science. 1988 Nov 4;242(4879):762–765. doi: 10.1126/science.2460920. [DOI] [PubMed] [Google Scholar]
  15. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  16. Hamill O. P., McBride D. W., Jr Rapid adaptation of single mechanosensitive channels in Xenopus oocytes. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7462–7466. doi: 10.1073/pnas.89.16.7462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hamill O. P., McBride D. W., Jr The pharmacology of mechanogated membrane ion channels. Pharmacol Rev. 1996 Jun;48(2):231–252. [PubMed] [Google Scholar]
  18. Hess P., Lansman J. B., Tsien R. W. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature. 1984 Oct 11;311(5986):538–544. doi: 10.1038/311538a0. [DOI] [PubMed] [Google Scholar]
  19. Iida H., Nakamura H., Ono T., Okumura M. S., Anraku Y. MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Mol Cell Biol. 1994 Dec;14(12):8259–8271. doi: 10.1128/mcb.14.12.8259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kanzaki M., Nagasawa M., Kojima I., Sato C., Naruse K., Sokabe M., Iida H. Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science. 1999 Aug 6;285(5429):882–886. doi: 10.1126/science.285.5429.882. [DOI] [PubMed] [Google Scholar]
  21. Keller B. U., Montal M. S., Hartshorne R. P., Montal M. Two-dimensional probability density analysis of single channel currents from reconstituted acetylcholine receptors and sodium channels. Arch Biochem Biophys. 1990 Jan;276(1):47–54. doi: 10.1016/0003-9861(90)90008-m. [DOI] [PubMed] [Google Scholar]
  22. Kienker P. Equivalence of aggregated Markov models of ion-channel gating. Proc R Soc Lond B Biol Sci. 1989 Apr 22;236(1284):269–309. doi: 10.1098/rspb.1989.0024. [DOI] [PubMed] [Google Scholar]
  23. Lane J. W., McBride D. W., Jr, Hamill O. P. Amiloride block of the mechanosensitive cation channel in Xenopus oocytes. J Physiol. 1991 Sep;441:347–366. doi: 10.1113/jphysiol.1991.sp018755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Le Dain A. C., Saint N., Kloda A., Ghazi A., Martinac B. Mechanosensitive ion channels of the archaeon Haloferax volcanii. J Biol Chem. 1998 May 15;273(20):12116–12119. doi: 10.1074/jbc.273.20.12116. [DOI] [PubMed] [Google Scholar]
  25. Magleby K. L., Pallotta B. S. Burst kinetics of single calcium-activated potassium channels in cultured rat muscle. J Physiol. 1983 Nov;344:605–623. doi: 10.1113/jphysiol.1983.sp014958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Magleby K. L., Song L. Dependency plots suggest the kinetic structure of ion channels. Proc Biol Sci. 1992 Aug 22;249(1325):133–142. doi: 10.1098/rspb.1992.0095. [DOI] [PubMed] [Google Scholar]
  27. McCormack K., Joiner W. J., Heinemann S. H. A characterization of the activating structural rearrangements in voltage-dependent Shaker K+ channels. Neuron. 1994 Feb;12(2):301–315. doi: 10.1016/0896-6273(94)90273-9. [DOI] [PubMed] [Google Scholar]
  28. McManus O. B., Magleby K. L. Accounting for the Ca(2+)-dependent kinetics of single large-conductance Ca(2+)-activated K+ channels in rat skeletal muscle. J Physiol. 1991 Nov;443:739–777. doi: 10.1113/jphysiol.1991.sp018861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. McManus O. B., Magleby K. L. Kinetic states and modes of single large-conductance calcium-activated potassium channels in cultured rat skeletal muscle. J Physiol. 1988 Aug;402:79–120. doi: 10.1113/jphysiol.1988.sp017195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Methfessel C., Witzemann V., Takahashi T., Mishina M., Numa S., Sakmann B. Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels. Pflugers Arch. 1986 Dec;407(6):577–588. doi: 10.1007/BF00582635. [DOI] [PubMed] [Google Scholar]
  31. Morris C. E. Mechanosensitive ion channels. J Membr Biol. 1990 Feb;113(2):93–107. doi: 10.1007/BF01872883. [DOI] [PubMed] [Google Scholar]
  32. Oakley A. J., Martinac B., Wilce M. C. Structure and function of the bacterial mechanosensitive channel of large conductance. Protein Sci. 1999 Oct;8(10):1915–1921. doi: 10.1110/ps.8.10.1915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Patlak J. B., Gration K. A., Usherwood P. N. Single glutamate-activated channels in locust muscle. Nature. 1979 Apr 12;278(5705):643–645. doi: 10.1038/278643a0. [DOI] [PubMed] [Google Scholar]
  34. Patlak J. B., Ortiz M. Slow currents through single sodium channels of the adult rat heart. J Gen Physiol. 1985 Jul;86(1):89–104. doi: 10.1085/jgp.86.1.89. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Price M. P., Lewin G. R., McIlwrath S. L., Cheng C., Xie J., Heppenstall P. A., Stucky C. L., Mannsfeldt A. G., Brennan T. J., Drummond H. A. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature. 2000 Oct 26;407(6807):1007–1011. doi: 10.1038/35039512. [DOI] [PubMed] [Google Scholar]
  36. Qin F., Auerbach A., Sachs F. A direct optimization approach to hidden Markov modeling for single channel kinetics. Biophys J. 2000 Oct;79(4):1915–1927. doi: 10.1016/S0006-3495(00)76441-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Qin F., Auerbach A., Sachs F. Estimating single-channel kinetic parameters from idealized patch-clamp data containing missed events. Biophys J. 1996 Jan;70(1):264–280. doi: 10.1016/S0006-3495(96)79568-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Qin F., Auerbach A., Sachs F. Hidden Markov modeling for single channel kinetics with filtering and correlated noise. Biophys J. 2000 Oct;79(4):1928–1944. doi: 10.1016/S0006-3495(00)76442-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rothberg B. S., Bello R. A., Magleby K. L. Two-dimensional components and hidden dependencies provide insight into ion channel gating mechanisms. Biophys J. 1997 Jun;72(6):2524–2544. doi: 10.1016/S0006-3495(97)78897-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Rothberg B. S., Magleby K. L. Gating kinetics of single large-conductance Ca2+-activated K+ channels in high Ca2+ suggest a two-tiered allosteric gating mechanism. J Gen Physiol. 1999 Jul;114(1):93–124. doi: 10.1085/jgp.114.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Rothberg B. S., Magleby K. L. Kinetic structure of large-conductance Ca2+-activated K+ channels suggests that the gating includes transitions through intermediate or secondary states. A mechanism for flickers. J Gen Physiol. 1998 Jun;111(6):751–780. doi: 10.1085/jgp.111.6.751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sackin H. A stretch-activated K+ channel sensitive to cell volume. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1731–1735. doi: 10.1073/pnas.86.5.1731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sackin H. Mechanosensitive channels. Annu Rev Physiol. 1995;57:333–353. doi: 10.1146/annurev.ph.57.030195.002001. [DOI] [PubMed] [Google Scholar]
  44. Saitou T., Ishikawa T., Obara K., Nakayama K. Characterization of whole-cell currents elicited by mechanical stimulation of Xenopus oocytes. Pflugers Arch. 2000 Oct;440(6):858–865. doi: 10.1007/s004240000337. [DOI] [PubMed] [Google Scholar]
  45. Sigworth F. J., Sine S. M. Data transformations for improved display and fitting of single-channel dwell time histograms. Biophys J. 1987 Dec;52(6):1047–1054. doi: 10.1016/S0006-3495(87)83298-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Silberberg S. D., Magleby K. L. Voltage-induced slow activation and deactivation of mechanosensitive channels in Xenopus oocytes. J Physiol. 1997 Dec 15;505(Pt 3):551–569. doi: 10.1111/j.1469-7793.1997.551ba.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Sokabe M., Sachs F., Jing Z. Q. Quantitative video microscopy of patch clamped membranes stress, strain, capacitance, and stretch channel activation. Biophys J. 1991 Mar;59(3):722–728. doi: 10.1016/S0006-3495(91)82285-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Sukharev S. I., Blount P., Martinac B., Blattner F. R., Kung C. A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature. 1994 Mar 17;368(6468):265–268. doi: 10.1038/368265a0. [DOI] [PubMed] [Google Scholar]
  49. Sukharev S. I., Schroeder M. J., McCaslin D. R. Stoichiometry of the large conductance bacterial mechanosensitive channel of E. coli. A biochemical study. J Membr Biol. 1999 Oct 1;171(3):183–193. doi: 10.1007/s002329900570. [DOI] [PubMed] [Google Scholar]
  50. Sukharev S. I., Sigurdson W. J., Kung C., Sachs F. Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J Gen Physiol. 1999 Apr;113(4):525–540. doi: 10.1085/jgp.113.4.525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Sukharev S., Betanzos M., Chiang C. S., Guy H. R. The gating mechanism of the large mechanosensitive channel MscL. Nature. 2001 Feb 8;409(6821):720–724. doi: 10.1038/35055559. [DOI] [PubMed] [Google Scholar]
  52. Yang X. C., Sachs F. Characterization of stretch-activated ion channels in Xenopus oocytes. J Physiol. 1990 Dec;431:103–122. doi: 10.1113/jphysiol.1990.sp018322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Zagotta W. N., Hoshi T., Aldrich R. W. Shaker potassium channel gating. III: Evaluation of kinetic models for activation. J Gen Physiol. 1994 Feb;103(2):321–362. doi: 10.1085/jgp.103.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Zhang Y., Hamill O. P. Calcium-, voltage- and osmotic stress-sensitive currents in Xenopus oocytes and their relationship to single mechanically gated channels. J Physiol. 2000 Feb 15;523(Pt 1):83–99. doi: 10.1111/j.1469-7793.2000.t01-2-00083.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Zhang Y., Hamill O. P. On the discrepancy between whole-cell and membrane patch mechanosensitivity in Xenopus oocytes. J Physiol. 2000 Feb 15;523(Pt 1):101–115. doi: 10.1111/j.1469-7793.2000.00101.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Zheng J., Sigworth F. J. Selectivity changes during activation of mutant Shaker potassium channels. J Gen Physiol. 1997 Aug;110(2):101–117. doi: 10.1085/jgp.110.2.101. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES