Abstract
Several complementary physical techniques have been used to characterize the aggregate structures formed in solutions containing dimyristoylphosphatidylcholine (DMPC)/dihexanoylphosphatidylcholine (DHPC) at ratios of < or =0.5 and to establish their morphology and lipid organization as that of bicelles. (31)P NMR studies showed that the DMPC and DHPC components were highly segregated over a wide range of DMPC/DHPC ratios (q = 0.05-0.5) and temperatures (15 degrees C and 37 degrees C). Only at phospholipid concentrations below 130 mM did the bicelles appear to undergo a change in morphology. These results were corroborated by fluorescence data, which demonstrated the inverse dependence of bicelle size on phospholipid concentration as well as a distinctive change in phospholipid arrangement at low concentrations. In addition, dynamic light scattering and electron microscopy studies supported the hypothesis that the bicellar phospholipid aggregates are disk-shaped. The radius of the planar domain of the disk was found to be directly proportional to the ratio of DMPC/DHPC and inversely proportional to the total phospholipid concentration when the DMPC/DHPC ratio was held constant at 0.5. Taken together, these results suggest that bicelles with low q retain the morphology and bilayer organization typical of their liquid-crystalline counterparts, making them useful membrane mimetics.
Full Text
The Full Text of this article is available as a PDF (180.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Castle J. D., Hubbell W. L. Estimation of membrane surface potential and charge density from the phase equilibrium of a paramagnetic amphiphile. Biochemistry. 1976 Nov 2;15(22):4818–4831. doi: 10.1021/bi00667a011. [DOI] [PubMed] [Google Scholar]
- Cohen D. E., Thurston G. M., Chamberlin R. A., Benedek G. B., Carey M. C. Laser light scattering evidence for a common wormlike growth structure of mixed micelles in bile salt- and straight-chain detergent-phosphatidylcholine aqueous systems: relevance to the micellar structure of bile. Biochemistry. 1998 Oct 20;37(42):14798–14814. doi: 10.1021/bi980182y. [DOI] [PubMed] [Google Scholar]
- Eum K. M., Riedy G., Langley K. H., Roberts M. F. Temperature-induced fusion of small unilamellar vesicles formed from saturated long-chain lecithins and diheptanoylphosphatidylcholine. Biochemistry. 1989 Oct 3;28(20):8206–8213. doi: 10.1021/bi00446a036. [DOI] [PubMed] [Google Scholar]
- Gabriel N. E., Roberts M. F. Short-chain lecithin/long-chain phospholipid unilamellar vesicles: asymmetry, dynamics, and enzymatic hydrolysis of the short-chain component. Biochemistry. 1987 May 5;26(9):2432–2440. doi: 10.1021/bi00383a006. [DOI] [PubMed] [Google Scholar]
- Gabriel N. E., Roberts M. F. Spontaneous formation of stable unilamellar vesicles. Biochemistry. 1984 Aug 28;23(18):4011–4015. doi: 10.1021/bi00313a001. [DOI] [PubMed] [Google Scholar]
- Howard K. P., Opella S. J. High-resolution solid-state NMR spectra of integral membrane proteins reconstituted into magnetically oriented phospholipid bilayers. J Magn Reson B. 1996 Jul;112(1):91–94. doi: 10.1006/jmrb.1996.0116. [DOI] [PubMed] [Google Scholar]
- Kensil C. R., Dennis E. A. Action of cobra venom phospholipase A2 on large unilamellar vesicles: comparison with small unilamellar vesicles and multibilayers. Lipids. 1985 Feb;20(2):80–83. doi: 10.1007/BF02534212. [DOI] [PubMed] [Google Scholar]
- Koenig B. W., Strey H. H., Gawrisch K. Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. Biophys J. 1997 Oct;73(4):1954–1966. doi: 10.1016/S0006-3495(97)78226-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kremer J. M., Wiersema P. H. Exchange and aggregation in dispersions of dimyristoyl phosphatidylcholine vesicles containing myristic acid. Biochim Biophys Acta. 1977 Dec 15;471(3):348–360. doi: 10.1016/0005-2736(77)90041-4. [DOI] [PubMed] [Google Scholar]
- Kumar V. V., Baumann W. J. Lanthanide-induced phosphorus-31 NMR downfield chemical shifts of lysophosphatidylcholines are sensitive to lysophospholipid critical micelle concentration. Biophys J. 1991 Jan;59(1):103–107. doi: 10.1016/S0006-3495(91)82202-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuwahara M., Verkman A. S. Direct fluorescence measurement of diffusional water permeability in the vasopressin-sensitive kidney collecting tubule. Biophys J. 1988 Oct;54(4):587–593. doi: 10.1016/S0006-3495(88)82993-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Losonczi J. A., Prestegard J. H. Improved dilute bicelle solutions for high-resolution NMR of biological macromolecules. J Biomol NMR. 1998 Oct;12(3):447–451. doi: 10.1023/a:1008302110884. [DOI] [PubMed] [Google Scholar]
- Losonczi J. A., Prestegard J. H. Nuclear magnetic resonance characterization of the myristoylated, N-terminal fragment of ADP-ribosylation factor 1 in a magnetically oriented membrane array. Biochemistry. 1998 Jan 13;37(2):706–716. doi: 10.1021/bi9717791. [DOI] [PubMed] [Google Scholar]
- Mazer N. A., Benedek G. B., Carey M. C. Quasielastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt-lecithin solutions. Biochemistry. 1980 Feb 19;19(4):601–615. doi: 10.1021/bi00545a001. [DOI] [PubMed] [Google Scholar]
- Ottiger M., Bax A. Characterization of magnetically oriented phospholipid micelles for measurement of dipolar couplings in macromolecules. J Biomol NMR. 1998 Oct;12(3):361–372. doi: 10.1023/a:1008366116644. [DOI] [PubMed] [Google Scholar]
- Ram P., Prestegard J. H. Magnetic field induced ordering of bile salt/phospholipid micelles: new media for NMR structural investigations. Biochim Biophys Acta. 1988 May 24;940(2):289–294. doi: 10.1016/0005-2736(88)90203-9. [DOI] [PubMed] [Google Scholar]
- Ramirez B. E., Voloshin O. N., Camerini-Otero R. D., Bax A. Solution structure of DinI provides insight into its mode of RecA inactivation. Protein Sci. 2000 Nov;9(11):2161–2169. doi: 10.1110/ps.9.11.2161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders C. R., 2nd, Landis G. C. Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry. 1995 Mar 28;34(12):4030–4040. doi: 10.1021/bi00012a022. [DOI] [PubMed] [Google Scholar]
- Sanders C. R., 2nd, Prestegard J. H. Magnetically orientable phospholipid bilayers containing small amounts of a bile salt analogue, CHAPSO. Biophys J. 1990 Aug;58(2):447–460. doi: 10.1016/S0006-3495(90)82390-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders C. R., 2nd, Schaff J. E., Prestegard J. H. Orientational behavior of phosphatidylcholine bilayers in the presence of aromatic amphiphiles and a magnetic field. Biophys J. 1993 Apr;64(4):1069–1080. doi: 10.1016/S0006-3495(93)81473-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanders C. R., 2nd, Schwonek J. P. Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. Biochemistry. 1992 Sep 22;31(37):8898–8905. doi: 10.1021/bi00152a029. [DOI] [PubMed] [Google Scholar]
- Small D. M. Phase equilibria and structure of dry and hydrated egg lecithin. J Lipid Res. 1967 Nov;8(6):551–557. [PubMed] [Google Scholar]
- Stark R. E., Gosselin G. J., Donovan J. M., Carey M. C., Roberts M. F. Influence of dilution on the physical state of model bile systems: NMR and quasi-elastic light-scattering investigations. Biochemistry. 1985 Sep 24;24(20):5599–5605. doi: 10.1021/bi00341a047. [DOI] [PubMed] [Google Scholar]
- Struppe J., Komives E. A., Taylor S. S., Vold R. R. 2H NMR studies of a myristoylated peptide in neutral and acidic phospholipid bicelles. Biochemistry. 1998 Nov 3;37(44):15523–15527. doi: 10.1021/bi981326b. [DOI] [PubMed] [Google Scholar]
- Struppe J., Vold R. R. Dilute bicellar solutions for structural NMR work. J Magn Reson. 1998 Dec;135(2):541–546. doi: 10.1006/jmre.1998.1605. [DOI] [PubMed] [Google Scholar]
- Struppe J., Whiles J. A., Vold R. R. Acidic phospholipid bicelles: a versatile model membrane system. Biophys J. 2000 Jan;78(1):281–289. doi: 10.1016/S0006-3495(00)76591-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tjandra N., Bax A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science. 1997 Nov 7;278(5340):1111–1114. doi: 10.1126/science.278.5340.1111. [DOI] [PubMed] [Google Scholar]
- Vold R. R., Prosser R. S., Deese A. J. Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides. J Biomol NMR. 1997 Apr;9(3):329–335. doi: 10.1023/a:1018643312309. [DOI] [PubMed] [Google Scholar]
- Whiles J. A., Brasseur R., Glover K. J., Melacini G., Komives E. A., Vold R. R. Orientation and effects of mastoparan X on phospholipid bicelles. Biophys J. 2001 Jan;80(1):280–293. doi: 10.1016/S0006-3495(01)76013-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ye R. G., Verkman A. S. Simultaneous optical measurement of osmotic and diffusional water permeability in cells and liposomes. Biochemistry. 1989 Jan 24;28(2):824–829. doi: 10.1021/bi00428a062. [DOI] [PubMed] [Google Scholar]