Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Oct;81(4):2163–2171. doi: 10.1016/s0006-3495(01)75864-x

Structural evaluation of phospholipid bicelles for solution-state studies of membrane-associated biomolecules.

K J Glover 1, J A Whiles 1, G Wu 1, N Yu 1, R Deems 1, J O Struppe 1, R E Stark 1, E A Komives 1, R R Vold 1
PMCID: PMC1301688  PMID: 11566787

Abstract

Several complementary physical techniques have been used to characterize the aggregate structures formed in solutions containing dimyristoylphosphatidylcholine (DMPC)/dihexanoylphosphatidylcholine (DHPC) at ratios of < or =0.5 and to establish their morphology and lipid organization as that of bicelles. (31)P NMR studies showed that the DMPC and DHPC components were highly segregated over a wide range of DMPC/DHPC ratios (q = 0.05-0.5) and temperatures (15 degrees C and 37 degrees C). Only at phospholipid concentrations below 130 mM did the bicelles appear to undergo a change in morphology. These results were corroborated by fluorescence data, which demonstrated the inverse dependence of bicelle size on phospholipid concentration as well as a distinctive change in phospholipid arrangement at low concentrations. In addition, dynamic light scattering and electron microscopy studies supported the hypothesis that the bicellar phospholipid aggregates are disk-shaped. The radius of the planar domain of the disk was found to be directly proportional to the ratio of DMPC/DHPC and inversely proportional to the total phospholipid concentration when the DMPC/DHPC ratio was held constant at 0.5. Taken together, these results suggest that bicelles with low q retain the morphology and bilayer organization typical of their liquid-crystalline counterparts, making them useful membrane mimetics.

Full Text

The Full Text of this article is available as a PDF (180.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Castle J. D., Hubbell W. L. Estimation of membrane surface potential and charge density from the phase equilibrium of a paramagnetic amphiphile. Biochemistry. 1976 Nov 2;15(22):4818–4831. doi: 10.1021/bi00667a011. [DOI] [PubMed] [Google Scholar]
  2. Cohen D. E., Thurston G. M., Chamberlin R. A., Benedek G. B., Carey M. C. Laser light scattering evidence for a common wormlike growth structure of mixed micelles in bile salt- and straight-chain detergent-phosphatidylcholine aqueous systems: relevance to the micellar structure of bile. Biochemistry. 1998 Oct 20;37(42):14798–14814. doi: 10.1021/bi980182y. [DOI] [PubMed] [Google Scholar]
  3. Eum K. M., Riedy G., Langley K. H., Roberts M. F. Temperature-induced fusion of small unilamellar vesicles formed from saturated long-chain lecithins and diheptanoylphosphatidylcholine. Biochemistry. 1989 Oct 3;28(20):8206–8213. doi: 10.1021/bi00446a036. [DOI] [PubMed] [Google Scholar]
  4. Gabriel N. E., Roberts M. F. Short-chain lecithin/long-chain phospholipid unilamellar vesicles: asymmetry, dynamics, and enzymatic hydrolysis of the short-chain component. Biochemistry. 1987 May 5;26(9):2432–2440. doi: 10.1021/bi00383a006. [DOI] [PubMed] [Google Scholar]
  5. Gabriel N. E., Roberts M. F. Spontaneous formation of stable unilamellar vesicles. Biochemistry. 1984 Aug 28;23(18):4011–4015. doi: 10.1021/bi00313a001. [DOI] [PubMed] [Google Scholar]
  6. Howard K. P., Opella S. J. High-resolution solid-state NMR spectra of integral membrane proteins reconstituted into magnetically oriented phospholipid bilayers. J Magn Reson B. 1996 Jul;112(1):91–94. doi: 10.1006/jmrb.1996.0116. [DOI] [PubMed] [Google Scholar]
  7. Kensil C. R., Dennis E. A. Action of cobra venom phospholipase A2 on large unilamellar vesicles: comparison with small unilamellar vesicles and multibilayers. Lipids. 1985 Feb;20(2):80–83. doi: 10.1007/BF02534212. [DOI] [PubMed] [Google Scholar]
  8. Koenig B. W., Strey H. H., Gawrisch K. Membrane lateral compressibility determined by NMR and x-ray diffraction: effect of acyl chain polyunsaturation. Biophys J. 1997 Oct;73(4):1954–1966. doi: 10.1016/S0006-3495(97)78226-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kremer J. M., Wiersema P. H. Exchange and aggregation in dispersions of dimyristoyl phosphatidylcholine vesicles containing myristic acid. Biochim Biophys Acta. 1977 Dec 15;471(3):348–360. doi: 10.1016/0005-2736(77)90041-4. [DOI] [PubMed] [Google Scholar]
  10. Kumar V. V., Baumann W. J. Lanthanide-induced phosphorus-31 NMR downfield chemical shifts of lysophosphatidylcholines are sensitive to lysophospholipid critical micelle concentration. Biophys J. 1991 Jan;59(1):103–107. doi: 10.1016/S0006-3495(91)82202-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kuwahara M., Verkman A. S. Direct fluorescence measurement of diffusional water permeability in the vasopressin-sensitive kidney collecting tubule. Biophys J. 1988 Oct;54(4):587–593. doi: 10.1016/S0006-3495(88)82993-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Losonczi J. A., Prestegard J. H. Improved dilute bicelle solutions for high-resolution NMR of biological macromolecules. J Biomol NMR. 1998 Oct;12(3):447–451. doi: 10.1023/a:1008302110884. [DOI] [PubMed] [Google Scholar]
  13. Losonczi J. A., Prestegard J. H. Nuclear magnetic resonance characterization of the myristoylated, N-terminal fragment of ADP-ribosylation factor 1 in a magnetically oriented membrane array. Biochemistry. 1998 Jan 13;37(2):706–716. doi: 10.1021/bi9717791. [DOI] [PubMed] [Google Scholar]
  14. Mazer N. A., Benedek G. B., Carey M. C. Quasielastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt-lecithin solutions. Biochemistry. 1980 Feb 19;19(4):601–615. doi: 10.1021/bi00545a001. [DOI] [PubMed] [Google Scholar]
  15. Ottiger M., Bax A. Characterization of magnetically oriented phospholipid micelles for measurement of dipolar couplings in macromolecules. J Biomol NMR. 1998 Oct;12(3):361–372. doi: 10.1023/a:1008366116644. [DOI] [PubMed] [Google Scholar]
  16. Ram P., Prestegard J. H. Magnetic field induced ordering of bile salt/phospholipid micelles: new media for NMR structural investigations. Biochim Biophys Acta. 1988 May 24;940(2):289–294. doi: 10.1016/0005-2736(88)90203-9. [DOI] [PubMed] [Google Scholar]
  17. Ramirez B. E., Voloshin O. N., Camerini-Otero R. D., Bax A. Solution structure of DinI provides insight into its mode of RecA inactivation. Protein Sci. 2000 Nov;9(11):2161–2169. doi: 10.1110/ps.9.11.2161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sanders C. R., 2nd, Landis G. C. Reconstitution of membrane proteins into lipid-rich bilayered mixed micelles for NMR studies. Biochemistry. 1995 Mar 28;34(12):4030–4040. doi: 10.1021/bi00012a022. [DOI] [PubMed] [Google Scholar]
  19. Sanders C. R., 2nd, Prestegard J. H. Magnetically orientable phospholipid bilayers containing small amounts of a bile salt analogue, CHAPSO. Biophys J. 1990 Aug;58(2):447–460. doi: 10.1016/S0006-3495(90)82390-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sanders C. R., 2nd, Schaff J. E., Prestegard J. H. Orientational behavior of phosphatidylcholine bilayers in the presence of aromatic amphiphiles and a magnetic field. Biophys J. 1993 Apr;64(4):1069–1080. doi: 10.1016/S0006-3495(93)81473-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sanders C. R., 2nd, Schwonek J. P. Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid-state NMR. Biochemistry. 1992 Sep 22;31(37):8898–8905. doi: 10.1021/bi00152a029. [DOI] [PubMed] [Google Scholar]
  22. Small D. M. Phase equilibria and structure of dry and hydrated egg lecithin. J Lipid Res. 1967 Nov;8(6):551–557. [PubMed] [Google Scholar]
  23. Stark R. E., Gosselin G. J., Donovan J. M., Carey M. C., Roberts M. F. Influence of dilution on the physical state of model bile systems: NMR and quasi-elastic light-scattering investigations. Biochemistry. 1985 Sep 24;24(20):5599–5605. doi: 10.1021/bi00341a047. [DOI] [PubMed] [Google Scholar]
  24. Struppe J., Komives E. A., Taylor S. S., Vold R. R. 2H NMR studies of a myristoylated peptide in neutral and acidic phospholipid bicelles. Biochemistry. 1998 Nov 3;37(44):15523–15527. doi: 10.1021/bi981326b. [DOI] [PubMed] [Google Scholar]
  25. Struppe J., Vold R. R. Dilute bicellar solutions for structural NMR work. J Magn Reson. 1998 Dec;135(2):541–546. doi: 10.1006/jmre.1998.1605. [DOI] [PubMed] [Google Scholar]
  26. Struppe J., Whiles J. A., Vold R. R. Acidic phospholipid bicelles: a versatile model membrane system. Biophys J. 2000 Jan;78(1):281–289. doi: 10.1016/S0006-3495(00)76591-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tjandra N., Bax A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science. 1997 Nov 7;278(5340):1111–1114. doi: 10.1126/science.278.5340.1111. [DOI] [PubMed] [Google Scholar]
  28. Vold R. R., Prosser R. S., Deese A. J. Isotropic solutions of phospholipid bicelles: a new membrane mimetic for high-resolution NMR studies of polypeptides. J Biomol NMR. 1997 Apr;9(3):329–335. doi: 10.1023/a:1018643312309. [DOI] [PubMed] [Google Scholar]
  29. Whiles J. A., Brasseur R., Glover K. J., Melacini G., Komives E. A., Vold R. R. Orientation and effects of mastoparan X on phospholipid bicelles. Biophys J. 2001 Jan;80(1):280–293. doi: 10.1016/S0006-3495(01)76013-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ye R. G., Verkman A. S. Simultaneous optical measurement of osmotic and diffusional water permeability in cells and liposomes. Biochemistry. 1989 Jan 24;28(2):824–829. doi: 10.1021/bi00428a062. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES