Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 2001 Oct;81(4):2241–2250. doi: 10.1016/S0006-3495(01)75871-7

Location and dynamics of basic peptides at the membrane interface: electron paramagnetic resonance spectroscopy of tetramethyl-piperidine-N-oxyl-4-amino-4-carboxylic acid-labeled peptides.

K G Victor 1, D S Cafiso 1
PMCID: PMC1301695  PMID: 11566794

Abstract

The attractive interaction between basic protein domains and membranes containing acidic lipids is critical to the membrane attachment of many proteins involved in cell signaling. In this study, a series of charged model peptides containing lysine, phenylalanine, and the spin-labeled amino acid tetramethyl-piperidine-N-oxyl-4-amino-4-carboxylic acid (TOAC) were synthesized, and electron paramagnetic resonance (EPR) spectroscopy was used to determine their position on the membrane interface and free energy of binding. When membrane-bound, peptides containing only lysine and TOAC assume an equilibrium position within the aqueous double layer at a distance of approximately 5 A from the membrane interface, a result that is consistent with recent computational work. Substitution of two or more lysine residues by phenylalanine dramatically slows the backbone diffusion of these peptides and shifts their equilibrium position by 13-15 A so that the backbone lies several angstroms below the level of the lipid phosphate. These results are consistent with the hypothesis that the position and free energy of basic peptides when bound to membranes are determined by a long-range Coulombic attraction, the hydrophobic effect, and a short-range desolvation force. The differences in binding free energy within this set of charged peptides is not well accounted for by the simple addition of free energies based upon accepted side chain partition free energies, a result that appears to be in part due to differences in membrane localization of these peptides.

Full Text

The Full Text of this article is available as a PDF (365.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altenbach C., Greenhalgh D. A., Khorana H. G., Hubbell W. L. A collision gradient method to determine the immersion depth of nitroxides in lipid bilayers: application to spin-labeled mutants of bacteriorhodopsin. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1667–1671. doi: 10.1073/pnas.91.5.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arbuzova A., Wang L., Wang J., Hangyás-Mihályné G., Murray D., Honig B., McLaughlin S. Membrane binding of peptides containing both basic and aromatic residues. Experimental studies with peptides corresponding to the scaffolding region of caveolin and the effector region of MARCKS. Biochemistry. 2000 Aug 22;39(33):10330–10339. doi: 10.1021/bi001039j. [DOI] [PubMed] [Google Scholar]
  3. Archer S. J., Ellena J. F., Cafiso D. S. Dynamics and aggregation of the peptide ion channel alamethicin. Measurements using spin-labeled peptides. Biophys J. 1991 Aug;60(2):389–398. doi: 10.1016/S0006-3495(91)82064-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ben-Tal N., Honig B., Peitzsch R. M., Denisov G., McLaughlin S. Binding of small basic peptides to membranes containing acidic lipids: theoretical models and experimental results. Biophys J. 1996 Aug;71(2):561–575. doi: 10.1016/S0006-3495(96)79280-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buser C. A., Sigal C. T., Resh M. D., McLaughlin S. Membrane binding of myristylated peptides corresponding to the NH2 terminus of Src. Biochemistry. 1994 Nov 8;33(44):13093–13101. doi: 10.1021/bi00248a019. [DOI] [PubMed] [Google Scholar]
  6. Cafiso D. S., Hubbell W. L. EPR determination of membrane potentials. Annu Rev Biophys Bioeng. 1981;10:217–244. doi: 10.1146/annurev.bb.10.060181.001245. [DOI] [PubMed] [Google Scholar]
  7. Farahbakhsh Z. T., Altenbach C., Hubbell W. L. Spin labeled cysteines as sensors for protein-lipid interaction and conformation in rhodopsin. Photochem Photobiol. 1992 Dec;56(6):1019–1033. doi: 10.1111/j.1751-1097.1992.tb09725.x. [DOI] [PubMed] [Google Scholar]
  8. Hubbell W. L., Cafiso D. S., Altenbach C. Identifying conformational changes with site-directed spin labeling. Nat Struct Biol. 2000 Sep;7(9):735–739. doi: 10.1038/78956. [DOI] [PubMed] [Google Scholar]
  9. Kim J., Blackshear P. J., Johnson J. D., McLaughlin S. Phosphorylation reverses the membrane association of peptides that correspond to the basic domains of MARCKS and neuromodulin. Biophys J. 1994 Jul;67(1):227–237. doi: 10.1016/S0006-3495(94)80473-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kim J., Mosior M., Chung L. A., Wu H., McLaughlin S. Binding of peptides with basic residues to membranes containing acidic phospholipids. Biophys J. 1991 Jul;60(1):135–148. doi: 10.1016/S0006-3495(91)82037-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kleinschmidt J. H., Marsh D. Spin-label electron spin resonance studies on the interactions of lysine peptides with phospholipid membranes. Biophys J. 1997 Nov;73(5):2546–2555. doi: 10.1016/S0006-3495(97)78283-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Langen R., Oh K. J., Cascio D., Hubbell W. L. Crystal structures of spin labeled T4 lysozyme mutants: implications for the interpretation of EPR spectra in terms of structure. Biochemistry. 2000 Jul 25;39(29):8396–8405. doi: 10.1021/bi000604f. [DOI] [PubMed] [Google Scholar]
  13. Milton R. C., Becker E., Milton S. C., Baxter J. E., Elsworth J. F. Improved purities for Fmoc-amino acids from Fmoc-ONSu. Int J Pept Protein Res. 1987 Sep;30(3):431–432. doi: 10.1111/j.1399-3011.1987.tb03351.x. [DOI] [PubMed] [Google Scholar]
  14. Mosior M., McLaughlin S. Peptides that mimic the pseudosubstrate region of protein kinase C bind to acidic lipids in membranes. Biophys J. 1991 Jul;60(1):149–159. doi: 10.1016/S0006-3495(91)82038-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Murray D., Arbuzova A., Hangyás-Mihályné G., Gambhir A., Ben-Tal N., Honig B., McLaughlin S. Electrostatic properties of membranes containing acidic lipids and adsorbed basic peptides: theory and experiment. Biophys J. 1999 Dec;77(6):3176–3188. doi: 10.1016/S0006-3495(99)77148-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Murray D., Ben-Tal N., Honig B., McLaughlin S. Electrostatic interaction of myristoylated proteins with membranes: simple physics, complicated biology. Structure. 1997 Aug 15;5(8):985–989. doi: 10.1016/s0969-2126(97)00251-7. [DOI] [PubMed] [Google Scholar]
  17. Qin Z., Cafiso D. S. Membrane structure of protein kinase C and calmodulin binding domain of myristoylated alanine rich C kinase substrate determined by site-directed spin labeling. Biochemistry. 1996 Mar 5;35(9):2917–2925. doi: 10.1021/bi9521452. [DOI] [PubMed] [Google Scholar]
  18. Rassat A., Rey P. Nitroxydes. 23. Préparation d'aminoacides radicalaires et de leurs sels complexes. Bull Soc Chim Fr. 1967 Mar;3:815–818. [PubMed] [Google Scholar]
  19. Roux M., Neumann J. M., Bloom M., Devaux P. F. 2H and 31P NMR study of pentalysine interaction with headgroup deuterated phosphatidylcholine and phosphatidylserine. Eur Biophys J. 1988;16(5):267–273. doi: 10.1007/BF00254062. [DOI] [PubMed] [Google Scholar]
  20. Sigal C. T., Zhou W., Buser C. A., McLaughlin S., Resh M. D. Amino-terminal basic residues of Src mediate membrane binding through electrostatic interaction with acidic phospholipids. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12253–12257. doi: 10.1073/pnas.91.25.12253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Victor K., Cafiso D. S. Structure and position of the N-terminal membrane-binding domain of pp60src at the membrane interface. Biochemistry. 1998 Mar 10;37(10):3402–3410. doi: 10.1021/bi9721501. [DOI] [PubMed] [Google Scholar]
  22. Victor K., Jacob J., Cafiso D. S. Interactions controlling the membrane binding of basic protein domains: phenylalanine and the attachment of the myristoylated alanine-rich C-kinase substrate protein to interfaces. Biochemistry. 1999 Sep 28;38(39):12527–12536. doi: 10.1021/bi990847b. [DOI] [PubMed] [Google Scholar]
  23. Wertz S. L., Savino Y., Cafiso D. S. Solution and membrane bound structure of a peptide derived from the protein kinase C substrate domain of neuromodulin. Biochemistry. 1996 Aug 27;35(34):11104–11112. doi: 10.1021/bi961248x. [DOI] [PubMed] [Google Scholar]
  24. Wimley W. C., White S. H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol. 1996 Oct;3(10):842–848. doi: 10.1038/nsb1096-842. [DOI] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES